期刊文献+

一种基于边界收敛算法的TSP求

A TSP Solver Base on Boundary Convergence Algorithm
下载PDF
导出
摘要 通过对旅行商问题(TSP)进行深入研究并结合对一些求解TSP的典型算法的分析研究,提出一种边界收敛算法。在给定的平面点分布中,搜索最边缘的点并连接起来形成一个包围全部点的多边形回路,具有唯一性;然后根据被包围点加入多边形使得回路周长增加最短的原则,将被包围的点依次加入多边形边界回路,最终形成一条遍历全部点的回路。算法由java编程实现,与领域中其他典型算法进行实验比较,实验结果表明本算法不但能取得更优解而且具有快速求解、结果稳定的优势。 By means of studying the traveling salesman problem(TSP) deeply and analyzing some classic algorithms about solving TSP,put forward a boundary convergence algorithm;In the distribution of the planar points were given,search the remotest border points and connect these points to a connected return circuit including all the points,then,according to the principle that the surrounded points add to the polygon so that the return circuit circumference increase the shortest,let the surrounded points add to the polygon constantly,a polygon contain all the points was formed at last;The algorithm was realized by Java program,compare the experimental result with other classic algorithms,the experimental result shows that the boundary convergence algorithm has the advantages in solving problem quickly、stabilized result、simple operation.
出处 《物流工程与管理》 2011年第6期91-94,共4页 Logistics Engineering and Management
基金 华南理工大学广东省大学生创新性实验计划资助项目(S1010561080) 华南理工大学中央高校基本科研业务费项目(2009SZ0022) 教育部人文社会科学研究项目(09YJC630085)
关键词 旅行商问题 边界收敛算法 快速求解 稳定性 traveling salesman problem(TSP) boundary convergence algorithm solving problem quickly stability
  • 相关文献

参考文献14

  • 1Tasan, A. S. Gen, M. , A genetic algorithm based approach to vehicle routing problem with simultaneous pick - up and deliveries, Computers and Industrial Engineering (CIE), 2010,40th, pagesl - 5.
  • 2Lee, M. - J. Yee, J. R. , An efficient near - optimal algorithm for the joint traffic and trunk routing problem in self - planning networks, INFOCOM '89. Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies,23 -27 Apr 1989, pages 127 -135.
  • 3Mehdizadeh, K. Nekoui, M. A. A Modified DNA - Computing Sabahi, K. Akbarimajd, A. , Algorithm To Solve TSP,Mechatronics, IEEE International Colfference on. 2006, pages 65 - 68.
  • 4Fajar, A. Abu, N.A. Herman, N. S. , Initial Result of Clustering Strategy to Euclidean TS, Soft Computing and Pattern Recognition ,2009 , pages 13 - 17.
  • 5Lope, H. S. Coelho, L. S. , Particle Swam Optimization with Fast Local Search tor the Blind Traveling Salesman Problem, Hybrid Intelligent Systems, 6 - 9 NOV. 2005, pages 245 - 250.
  • 6Ali Khan,S. Asghar,S. Fong, S. , Modeling TSP with Particle Swarm Optimization and Genetic Algorithm, Advanced Information Management and Service ( IMS ) , 2010, pages 455 - 459.
  • 7Li - Ying Wang Jie Zhang Hua I,i, An hnproved Genetic Algorithm for TSP, Machine Learning and Cybernetics, 19 - 22 Aug. 2007, pages 925 - 928.
  • 8Geetha, R. R. Bouvanasilan, N. Seenuvasan, V. , A perspective view on Travelling Salesman Problem using genetic algorithm, Nature & Biologically Inspired Computing,9 - 11 Dec. 2009, pages 356 - 361.
  • 9Pullan, W. , Adapting the genetic algorithm to the travelling salesman problem, Evolutionary Computation, 8 - 12 Dec. 2003 ,pages 1029 - 1035.
  • 10Bandyopadhyay, S. Saha, S. Maulik, IL l)eb, K., A Simulated Annealing- Based Multiobjective Optimization Algorithm- AMOSA, Evolutionary Computation IEEE Transactions on, June 2008, pages 269 - 283.

二级参考文献28

  • 1王春水,肖学柱,陈汉明.遗传算法的应用举例[J].计算机仿真,2005,22(6):155-157. 被引量:20
  • 2王进,杨西龙,姜宏刚.遗传算法在军事物流运输路径选择中的运用[J].物流技术,2006,25(3):217-218. 被引量:5
  • 3周正武,丁同梅,田毅红,王晓峰.Matlab遗传算法优化工具箱(GAOT)的研究与应用[J].机械研究与应用,2006,19(6):69-71. 被引量:26
  • 4DORIGOM,STuTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,等译.北京,清华大学出版社,2006.
  • 5Michalewicz Z. Genetic Algorithm +Data Structure = Evolution Programs [M]. Berlin Heidelberg: Springer- Verlag, 1996.
  • 6Dasgupta D, Forrest S. Artificial Immune Systems in Industrial Applications[C]//IPMM'99. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu: IEEE press, 1999: 257-267.
  • 7Gong Maoguo, Jiao Licheng, Du Haifeng, et al. Multiobjective Immune Algorithm with Nondominated Neighbor-based Selection[J]. Evolutionary Computation, 2008, 16(2) : 225-255.
  • 8De Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251.
  • 9Kim J, Bentley P J. Towards an Artificial Immune System for Network Intrusion Detection: an Investigation of Dynamic Clonal Selection[C]//Proceedings of Congress on Evolutionary Computation. Hawaii: IEEE Press, 2002: 1015-1020.
  • 10Larranaga P, Kuijpers C M H, Murga R H, et, al. Genetic Algorithms for the Traveling Salesman Problem: a Review of Representations and Operators[J]. Artificial Intelligence Review, 1999, 13(2): 129-170.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部