期刊文献+

基于支持向量机的改进高斯核函数聚类算法研究 被引量:4

Clustering Algorithm of Improved Gauss Kernel Function Based on SVM
下载PDF
导出
摘要 针对基于支持向量机的聚类算法中,由于高斯核在无限远处的衰减几乎为零,从而影响聚类效果的问题,采用了改进的高斯核函数。该方法使在高维特征空间中,核函数不仅满足在测试点附近有较快的衰减速度,而且在无限远处仍能保持适度的衰减,从而提高聚类效果。实验表明,改进的高斯核比高斯核聚类错误率更低。 Aiming at the problem that Gauss kernel in infinite distance attenuation is almost zero thus affects the clustering effect in the SVM-based clustering algorithm, an improved Gauss kernel function is adopted. The system makes kernel function not only satisfy a server decay rate in the test point nearby, but also keep modest attenuation in infinite distance for improving the clustering effect in high-dimension feature space. The experiments show that the improved Gauss kernel has a lower clustering error rate.
出处 《现代电子技术》 2011年第13期67-70,73,共5页 Modern Electronics Technique
基金 863项目 "基于ROV的黄色物质水下原位探测系统"(2008AA09Z105)
关键词 改进的高斯核 聚类 SVC 高斯核 improved Gauss kernel function clustering support vector clustering Gauss kernel
  • 相关文献

参考文献6

  • 1MULLER K R, MIKA S, RATSCH G, et al. An introduction to kernel-based learning algorithms [J]. IEEE Trans. on Neural Networks, 2001, 12 (2) : 181-201.
  • 2MIKA S, RATSCH G, WESTON J, et al. Fisher diseriminant analysis with kernels [C]// Neural Networks Signal Process Proc. IEEE. Piscataway, NJ: IEEE, 1999: 41-48.
  • 3KLINKE S, COOK D. Binning of kernel-based projection pursuit indices in XGobi [ J ]. Computational Statistics &Data Analysis, 1997, 25(3): 363-369.
  • 4BEN-HUR A, HORN D, SIEGELMANN H T, et al. Support vector clustering [J]. Journal of Machine Learn- ing Research,2001(2) : 125-137.
  • 5BEN-HUR A,HORN D, SIEGELMANN H T,et al. Support vector clustering toolbox. [DB/OL]. [2001-05-13]. http://www, scholarpedia, org/article/ Support _ vector _ clustering.
  • 6REMAKI L, CHERIET M. KCS-new kernel family with compact support in scale space: formulation and impact[J]. IEEE Transactions on Image Processing, 2000, 9(6): 970-981.

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部