摘要
针对基于支持向量机的聚类算法中,由于高斯核在无限远处的衰减几乎为零,从而影响聚类效果的问题,采用了改进的高斯核函数。该方法使在高维特征空间中,核函数不仅满足在测试点附近有较快的衰减速度,而且在无限远处仍能保持适度的衰减,从而提高聚类效果。实验表明,改进的高斯核比高斯核聚类错误率更低。
Aiming at the problem that Gauss kernel in infinite distance attenuation is almost zero thus affects the clustering effect in the SVM-based clustering algorithm, an improved Gauss kernel function is adopted. The system makes kernel function not only satisfy a server decay rate in the test point nearby, but also keep modest attenuation in infinite distance for improving the clustering effect in high-dimension feature space. The experiments show that the improved Gauss kernel has a lower clustering error rate.
出处
《现代电子技术》
2011年第13期67-70,73,共5页
Modern Electronics Technique
基金
863项目
"基于ROV的黄色物质水下原位探测系统"(2008AA09Z105)
关键词
改进的高斯核
聚类
SVC
高斯核
improved Gauss kernel function
clustering
support vector clustering
Gauss kernel