期刊文献+

基于邻域粗糙集属性约简的对偶约束式LS-SVM财务困境预测模型研究 被引量:4

Study on Financial Distress Prediction Model of Least Squares Support Vector Machine of Dual Constraint Type Based on Attribute Reduction of Neighborhood Rough Set
下载PDF
导出
摘要 为了提高财务困境预测的正确率,改善模型预测的效果,将邻域粗糙集和遗传算法应用于对偶约束式最小二乘支持向量机,提出了一种基于邻域粗糙集属性约简的对偶约束式最小二乘支持向量机预测模型。同时,给出了这一改进模型的实现步骤。实证结果表明,通过邻域粗糙集指标预处理和遗传算法参数优化后,不但提高了模型预测的正确率,还降低了模型运行的时间,证实了该模型应用于财务困境预测是有效的。 In order to increase the accuracy of financial distress prediction and improve the prediction effect of model,this paper applies neighborhood rough set and genetic algorithm to least squares support vector machine of dual constraint type and advances a prediction model of least squares support vector machine of dual constraint type which is based on attribute reduction of neighborhood rough set.Besides,it presents the procedures of carrying out the improved model.The experimental results show that the model increases its prediction accuracy and reduce its running time by pretreating indicators with neighborhood rough set and optimizating parameters with genetic algorithm.The model is effective in forecasting financial distress.
作者 赵冠华
出处 《运筹与管理》 CSCD 北大核心 2011年第3期132-139,共8页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70840018) 山东省科技攻关计划项目(2008GG30009005) 山东省软科学研究计划项目(2008RKA223)
关键词 邻域粗糙集 对偶约束 最小二乘支持向量机 遗传算法 财务困境预测 neighborhood rough set dual constraint least squares support vector machine genetic algorithm financial distress prediction
  • 相关文献

参考文献17

  • 1Beaver W. Financial ratios as predictors of failure, empirical research in accounting: selected studies [ J]. Journal of Account- ing Research, 1966, 19(5) : 71-111.
  • 2Ahman E. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy [ J ]. The Journal of Finance, 1968, 23(4) : 589-609.
  • 3Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy[ J]. Journal of Accounting Research, 1980, 18 (1) : 109-131.
  • 4Odom M, Sharda R A. Neural networks model for bankruptcy prediction[ G]. Proceedings of the IEEE International Conference on Neural Network, 1990. 163-168.
  • 5杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18. 被引量:202
  • 6李秉祥.企业财务危机非线性组合预测方法及实证[J].系统工程理论方法应用,2004,13(3):222-225. 被引量:5
  • 7Fan A, Palaniswami M, Selecting bankruptcy predictors using a support vector machine approach[ J]. Proceeding of the international joint conference on neural network, 2000, (6) : 354-359.
  • 8Jae H Min, Young-Chan Lee, Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters[ J ]. Expert Systems with Applications, 2005,28 (4) : 603- 614.
  • 9李贺,冯天瑾,王树文.一种基于SVM的多变量企业财务预警模型[J].通讯和计算机(中英文版),2005,2(8):32-36. 被引量:6
  • 10Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letter, 1999, (9) : 293-300.

二级参考文献33

  • 1杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18. 被引量:202
  • 2张华伦,孙毅.企业财务危机预警Rough-Fuzzy-ANN模型的建立及应用[J].运筹与管理,2006,15(2):103-107. 被引量:9
  • 3李贺,冯天瑾,王树文.一种基于SVM的多变量企业财务预警模型[J].通讯和计算机(中英文版),2005,2(8):32-36. 被引量:6
  • 4[1]Altman E I Edward. Financial ratios, discriminant analysis and the predication of corporate bankruptcy [J]. The Journal of Finance, 1968, 23 : 589- 609.
  • 5[2]Eisenbeis R A. Pitfalls in the application discriminant analysis in business and economics [J]. TheJournal of Finance. 1997,32 : 875- 900.
  • 6[3]Eisenbeis R A. Pitfalls in the application of neural networks: the case of bank failure predictions [J]. Management Sciences, 1992,38(1):926-947.
  • 7[4]Altman E I, Giancarlo Marco, Franco Varetto. Cor porate distress diagnosis: comparisons using linear discriminate analysis and neural networks[J]. Journal of Banking and Finance, 1994, (18) : 505- 529.
  • 8[5]Winkler R L. Combing forecasts: a philosophical ba sis and some current issues[J]. Forecasting, 1985,5 : 605-609.
  • 9[10]Graner C W J. Forecasting economic time series [M]. 2nded. Orland :Academic Press, 1986.
  • 10Beaver W H,Financial ratios as predictors of failure[J].Journal of Accounting research,1966,4(Supplement):71-111.

共引文献218

同被引文献31

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部