期刊文献+

基于左右导数算子类的边缘提取 被引量:10

Edges detection operators based on right and left derivatives
下载PDF
导出
摘要 根据图像灰度的左右导数及其性质构造了几个提取和检测图像阶跃型边缘和屋顶型边缘的算子,并从理论和实验结果上同Prewitt 算子、Sobel 算子、Canny 算子及Laplacian 算子等进行了比较和分析,发现此类算子包含了这些重要的传统微分算子,而且还具有算法简单灵活,检测精度高和抗噪声干扰能力较强等优点。实验结果还表明在没有进行进一步细化加工的情况下,文中所述的广义左右导数算子无论是检测阶跃型边缘还是屋顶型边缘。 Using the right derivative and left derivative of the image′s gray function, a class of operators to detect the step edges and roof edges are constructed. By comparing and analyzing it with Prewitt, Sobel, Canny and Laplacian operator in the theory and experimental demonstrations, we find that the operators are not only with advantages of simplicity, convenience, higher accuracy of detection and better ability of reducing noise, but also more general than some important classical differential operators. The experimental demonstrations also show whether detecting step edges or detecting roof edges, the effect of the general right and left derivative operators is better than those of all above typical differential operators in the case of no any thinning process.
出处 《红外与激光工程》 EI CSCD 1999年第5期35-38,共4页 Infrared and Laser Engineering
基金 北京大学视觉与听觉处理国家重点实验室课题基金
关键词 左右导数 微分算子 边缘检测 边缘提取 图像处理 Right and left derivative\ \ Differential operator\ \ Edge detection\ \ Pre\|edge image
  • 相关文献

参考文献2

二级参考文献4

共引文献76

同被引文献74

引证文献10

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部