期刊文献+

On braided Lie algebras

关于辫子李代数(英文)
下载PDF
导出
摘要 Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules. 设(C,C)为辫子张量范畴,研究辫子张量范畴中辫子李代数和左Jacobi辫子李代数之间的关系.首先,引入了一个新的定义即辫子张量范畴中的辫子平方交换的代数并得到3个关于辫子的等式.其次,证明了对于辫子张量范畴中的结合代数A,(A,[,])是辫子李代数当且仅当(A,[,])是左Jacobi辫子李代数.最后,作为上述结果的应用,给出了Yetter-Drinfel'd模范畴和Hopf双模范畴中辫子李代数的具体结构.
机构地区 东南大学数学系
出处 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期227-229,共3页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.10871042)
关键词 Hopf algebra braided monoidal category braided Lie algebra Hopf代数 辫子张量范畴 辫子李代数
  • 相关文献

参考文献15

  • 1王栓宏.Central invariants of p-Lie algebras in Yetter-Drinfeld categories[J].Science China Mathematics,2000,43(8):803-809. 被引量:1
  • 2Shouchuan Zhang,Yao-Zhong Zhang.Braided m-Lie Algebras[J]. Letters in Mathematical Physics . 2004 (2)
  • 3Shuanhong Wang.Central invariants of ρ-Lie algebras in Yetter-Drinfeld categories[J]. Science in China Series A: Mathematics . 2000 (8)
  • 4Y. Bahturin,D. Fischman,S. Montgomery.On the generalized Lie structure of associative algebras[J]. Israel Journal of Mathematics . 1996 (1)
  • 5Majid S.Quantum and braided Lie algebra. Journal of Geometry . 1994
  • 6Bahturin Y,Fischman D,Montgomery S.Bicharacter,twistings and Scheunert’’s theorem for Hopf algebra. Journal of Algebra . 2001
  • 7Wang S H.On H-Lie structure of associative algebras in Yetter-Drinfel’’d categories. Communications in Alge-bra . 2002
  • 8Wang S H,Zhu H X.On braided Lie structures of algebras in the categories of weak Hopf bimodules. Algebra Col-loquium . 2010
  • 9S.H. Wang.An analogue of Kegel‘s theorem for quasi-associative algebras. Communications in Algebra . 2005
  • 10Cohen C,et al.Schur’s double centralizer theorem for triangular Hopf algebras. Proceedings of the American Mathematical Society . 1994

二级参考文献1

  • 1Montgomery,S.Hopf algebras and their actions on rings, CBMS tectures in Math.AMS, Providence RI: Am[].MathSoc.1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部