期刊文献+

热等静压法制备NbC颗粒增强45CrMoV复合材料的组织与性能 被引量:3

Structure and peoperties of HIP NbC particulate reinforced 45CrMoV composite
下载PDF
导出
摘要 采用机械球磨和热等静压(hot isostatic press,HIP)相结合的方法制备NbC颗粒增强45CrMoV弹簧钢基复合材料(NbCp/45CrMoV),观察该材料的显微组织、增强颗粒分布和界面结合情况,检测其相对密度、硬度、拉伸性能和摩擦磨损性能,并探讨其断裂行为和磨损机理。结果表明,NbCp/45CrMoV复合材料的组织均匀细小,NbC颗粒均匀地弥散分布在基体之中,且与基体界面结合良好,相对密度达到99%以上。与45CrMoV弹簧钢相比,该材料的硬度和弹性模量增大,分别为44 HRC和208 GPa,抗拉强度略有降低,为1 250 MPa;伸长率由11%减小到2%;耐磨性能大幅提高,特别是在高载荷下,例如700 N时,质量磨损只有HIP 45CrMoV的1/4,摩擦因数有所增大。 NbC particulate reinforced spring steel matrix composite(NbCp/45CrMoV) was prepared by hot isostatic pressing(HIP),and its physical/mechanical properties had been investigated,including observing the microstructure,NbC distribution and the bonding interface of the composite,measuring the density,hardness,tensile strength,wear resistance of the composite,and analyzing the fracture behaviour and wear mechanism of the composite.Study results show that the composite has fine microstructure,uniform NbC distribution and good interface bonding between 45CrMoV matrix and NbC particles.The relative density,tensile strength,elongation,hardness,elastic modulus of the composite are 99%,1 250 MPa,2%,HRC 44,208 GPa,respectively.The wear resistance of the composite has greatly enhanced,especially under high load,the wear loss of NbCp/45CrMoV composite is only one quarter of the HIP 45CrMoV under load of 700 N,and the friction coefficient becomes greater.
出处 《粉末冶金材料科学与工程》 EI 2011年第3期335-340,共6页 Materials Science and Engineering of Powder Metallurgy
基金 军品配套研制项目(JPPT-115-2-709) 教育部新世纪优秀人才基金资助项目(NCET-05-0739)
关键词 45CrMoV NBC 热等静压(HIP) 颗粒增强 摩擦磨损 45CrMoV NbC hot isostatic pressing(HIP) particulate reinforced friction and wear
  • 相关文献

参考文献10

  • 1UPADHYAYA G 5.Sintered Metal-ceramic Composites[M].Amsterdam:Elsevier Science Publishers,1994:253-254.
  • 2THUMMLER F,GUTSFELD C.A new class of wear resistance materials[J].MPR,1997,23(6):225.
  • 3SRIVATSAN T S,ANNIGERIT R.An investigation of cyclic plastic strain response and fracture behavior of steel-based metal-matrix composites[J].Engineering Fracture Mechanics,1997,56(4):451-481.
  • 4ZHANG J S,LIU X J,CUI H,et al.Ageing behaviour of spray-deposited 18Ni(250) maraging steel +10vol.% Al<,2>O<,3> particulate-reinforced metal matrix composites[J].Materials Science and Engineering,1997,A225(1/2):96-104.
  • 5ABENOJAR J,VELASCO F,BAUTISTA A,et al.Atmosphere influence in sintering process of stainless steels matrix composites reinforced with hard particles[J].Composites Science and Technology,2003,63(1):69-79.
  • 6SRIVATSAN T S,ANNIGERI R,AMIT P.Tensile deformation and fracture behaviour of a tool-steel-based metal-matrix composite[J].Composites:Part A:Applied Science and Manufacturing,1997,28(4):377-385.
  • 7章林,刘芳,李志友,周科朝.颗粒增强型铁基粉末冶金材料的研究现状[J].粉末冶金材料科学与工程,2004,9(2):138-144. 被引量:7
  • 8PAGOUNIS E,LINDROOS V K.Processing and properties of particulate reinforced steel matrix composites[J].Materials Science and Engineering,1998,A246(1/2):221-234.
  • 9TOHGO IL ITOH Y,SHIMAMURA Y.A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution[J].Composites:Part A:Applied Science and Manufacturing,2010,41(2):313-321.
  • 10曹洪吉,宋延沛,王文焱,程丽.载荷对颗粒增强铁基复合材料摩擦性能的影响[J].表面技术,2005,34(6):17-18. 被引量:2

二级参考文献20

  • 1[1]Bolton J D, Youseffi M. Microstructure development and sintering kinetics in ceramic reinforced high speed steel metal matrix composite[J]. Powder Metall, 1993,36 (2): 142-152.
  • 2[3]Kattamis T Z,Suganurna T. Solidification procession and tribological behaviour of particulate TiC-ferrous matrix composites[J]. Material Science and Engineering, 1990,A128(2) :241-252.
  • 3[4]Hanata K, Ssakai M, Shigeeda T, et al. Development of high-performance valve seat material for diesel engine[A].Proceedinds of 2000 Powder Metallurgy World Congress[C]. Tokyo, 2000.
  • 4[5]Pagounis E,Lindroos V K. Processing and properties of particulate reinforced steel matrix composites[J]. Material Science and Engineering, 1998,246 (1/2): 221-234.
  • 5[6]Gutsfeld F. Thümmler. Mechanically alloyed sintered steels with a high hard phase content[J]. MPR, 1990,45(11) : 769-771.
  • 6[7]Rosskamp H, Ostqathe M, Thuemmler F, et al. Sintered steels with inert hard phase produced by mechanical alloying in ball mill[J]. Powder Metallurgy, 1996,39(1):7-43.
  • 7[11]Pagounis E, Talvitie M,Lindroos V K. Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing[J]. Powder Metallurgy, 1997,40(1):55-61.
  • 8[12]Nakata T, Hayasaka T, Endoh H, et al. Sintered materials with new concept for valve seats with and without cobalt [J]. Metal Powder Report, 1981,36(10) :487-490.
  • 9[13]Naoshi Ishihara,Takashi Maejima. Mechanical properties of Fe-based sintered composite material[A]. Proceedinds of 2000 Powder Metallurgy World Congress[C]. Tokyo, 2000.
  • 10[14]Pagounis E,Lindroos V K. The role of internal stresses on the phase transformation of iron alloys[J]. Scr Mater, 1997,37(1) :65-69.

共引文献7

同被引文献24

  • 1章林,刘芳,李志友,周科朝.颗粒增强型铁基粉末冶金材料的研究现状[J].粉末冶金材料科学与工程,2004,9(2):138-144. 被引量:7
  • 2卢德宏,朱凌云,蒋业华,周荣.合金元素对钢基复合材料组织和性能的影响[J].昆明理工大学学报(理工版),2005,30(1):25-27. 被引量:4
  • 3钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究[J].机械强度,2005,27(3):358-370. 被引量:198
  • 4杨涛林,陈跃.颗粒增强金属基复合材料的研究进展[J].铸造技术,2006,27(8):871-873. 被引量:22
  • 5CHANG L C. Microstructures and reaction kinetics of bainite transformation in Si-rich steels [J]. Materials Science and Engineering, 2004, 368: 175-182.
  • 6SALEH M H, PRIESTNER R. Retained austenite in dual-phase silicon steels and its effect on mechanical properties [J]. Journal of Materials Processing Technology, 2011, 113: 587-593.
  • 7MENAPACE C, LONARDELLI I, TAIT M, et al. Nanostructure/ultrafine multiphase steel with enhanced ductility obtained by mechanical alloying and spark plasma sintering of powders [J]. Materials Science and Engineering A, 2009, 517: 1-7.
  • 8GASSMANN R C. Laser cladding with (WC+W2C)Co-Cr-C and (WC+W2C)Ni-B-Si composites for enhanced abrasive wear resistance [J]. Materials Science and Technology, 1996, 12(8): 691-696.
  • 9FRIEND C M. Toughness in metal matrix composites [J]. Mater Sci Tech, 1989, 5(1): 1.
  • 10NARDONE V C. Microstructurally toughened particulate reinforced aluminum matrix composites [J]. Metall Trans, 1991, 22A: 171.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部