期刊文献+

改进ICA的人脸特征提取方法 被引量:1

Face Feature Extraction Method Based on ICA
下载PDF
导出
摘要 在人脸特征提取的过程中主要采用ICA方法。介绍了ICA算法的原理,并对ICA算法的优缺点进行了讨论,给出了改进的ICA算法。试验结果表明,改进的ICA算法应用于人脸的特征提取比PCA算法更具有优越性,所提取的人脸特征更利于人脸的分类,从而获得较高的识别率。 This paper presents a method to extract face feature by using ICA.Firstly,it introduces independent component analysis(ICA) algorithm.Then,discusses the advantage and disadvantage of this method and gives a new algorithm on ICA.The results indicate that ICA using in t recognition and face feature extraction is better than PCA.
作者 杨颖娴
出处 《长江大学学报(自然科学版)》 CAS 2011年第5期88-90,7,共3页 Journal of Yangtze University(Natural Science Edition)
关键词 独立元分析法 特征提取 人脸识别 ICA feature extraction face recognition
  • 相关文献

参考文献5

  • 1余晓梅,徐丹.基于外观的子空间人脸识别方法研究[J].计算机应用研究,2007,24(5):10-12. 被引量:5
  • 2Belhumeur P N, Hespanha J P, Kriengman D J. Fishedaces IRecognition using class specific linear projection [J] . IEEE Transaction on Pattern Analysis and MachineIntelligence, 1997, 19 (7) : 771-720.
  • 3张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 4Yuenet P C. Face representation using independent component analysis [J] . Pattern Recognition, 2002, 35 (6): 1247-1257.
  • 5Bell A J. An information maximization approach to blind separation and blinddeconvolution [J] . Neural computation, 1995, 7 (6): 1129-1131.

二级参考文献74

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献213

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部