摘要
讨论了局部对称共形平坦黎曼流形中紧致极小子流形,得到了这类子流形第二基本形式模长平方关于外围空间Ricci曲率的Pinching定理,推广了相应的结果.
The compact minimal submanifold of a locally symmetric and comformally flat Riemannian manifold is investigated, and the Pinching theorems regarding the square of the length of the second fundamental form of the submanifolds and the outer space Ricci curvature are obtained,thus generalizing the corresponding results.
出处
《绍兴文理学院学报》
2011年第8期5-9,共5页
Journal of Shaoxing University
关键词
局部对称
共形平坦
极小子流形
全测地
local symmetry
conformally flat
minimal submanifolds
totally geodesic