期刊文献+

局部对称共形平坦黎曼流形中紧致极小子流形的Ricci曲率

The Ricci Curvature of Compact Minimal Submanifolds in a Locally Symmetric Conformally Flat Riemannian Manifold
下载PDF
导出
摘要 讨论了局部对称共形平坦黎曼流形中紧致极小子流形,得到了这类子流形第二基本形式模长平方关于外围空间Ricci曲率的Pinching定理,推广了相应的结果. The compact minimal submanifold of a locally symmetric and comformally flat Riemannian manifold is investigated, and the Pinching theorems regarding the square of the length of the second fundamental form of the submanifolds and the outer space Ricci curvature are obtained,thus generalizing the corresponding results.
作者 徐仙发
出处 《绍兴文理学院学报》 2011年第8期5-9,共5页 Journal of Shaoxing University
关键词 局部对称 共形平坦 极小子流形 全测地 local symmetry conformally flat minimal submanifolds totally geodesic
  • 相关文献

参考文献2

二级参考文献6

  • 1舒世昌.关于局部对称共形平坦黎曼流形上极小子流形的内蕴刚性[J].工程数学学报,1996,13(3):29-34. 被引量:5
  • 2LI An-min, LI Jin-min. An intrinsic rigidity theorem for minimal submanfolds in a sphere [J]. Arch. Math. (Basel), 1992, 58(6): 582-594.
  • 3CHEN Guang-hua, XU Sen-lin. Rigidity of compact minimalsubmanifolds in a locally symmetric and con formally that Riemann manifold [J]. Acta Math. Sci. (English Ed.), 1996, 16(1): 89-96.
  • 4YAU S T. Submanifolds with constant mean curvature. Ⅰ, Ⅱ [J]. Amer. J. Math., 1974, 96:346-366
  • 5XU Hong-wei. On closed minimal submanifolds in pinched Riemann manifolds [J]. Trans. Amer. Math. Soc., 1995, 347(5): 1743-1751.
  • 6Li Anmin,Arch Math,1992年,58期,582页

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部