期刊文献+

热弹性问题直接边界元法中的边界层效应 被引量:1

The boundary layer effect in the BEM of thermo elasticity problems with direct formulation
下载PDF
导出
摘要 在热弹性问题的直接变量边界元分析中,求解近边界点处的热应力时,会涉及几乎强奇异和几乎超奇异积分的处理问题,特别是几乎超奇异积分的处理会更加困难.为此采用一种非线性变量替换法,有效地改善了被积函数的震荡特性,从而消除了核积分的几乎奇异性.数值实验表明,本算法稳定,效率高,并可达到很高的计算精度,即使场点非常靠近边界,仍可避免边界层效应现象. For the direct boundary element analysis of thermo elastic problem,the nearly strongly singular and hyper-singular integrals occur when the thermal stress at interior points close to the boundary needs to be calculated,and especially,the hyper-singular integrals are harder to treat.In this paper,an efficient non-linear transformation is adopted and applied to calculate the thermal stress at interior points very close to the boundary.It can remove or damp out the nearly singularity efficiently by smoothing out the rapid variations of the integrand of nearly singular integrals,and improve the accuracy of numerical results greatly.Numerical examples of thermo elasticity problems are given with satisfactory results,showing the high efficiency and stability of the suggested approach,and the boundary layer effect can be avoided successfully even when the internal points are very close to the boundary.
作者 李平 张耀明
出处 《山东理工大学学报(自然科学版)》 CAS 2011年第3期1-5,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(10571110) 山东省自然科学基金资助重点项目(ZR2010AZ003)
关键词 边界元法 热弹性问题 几乎奇异积分 变量替换法 BEM thermo elasticity problems nearly singular integrals transformation
  • 相关文献

参考文献4

二级参考文献32

  • 1牛忠荣,王左辉,胡宗军,周焕林.二维边界元法中几乎奇异积分的解析法[J].工程力学,2004,21(6):113-117. 被引量:13
  • 2董春迎,谢志成,姚振汉,杜庆华.边界积分方程中超奇异积分的解法[J].力学进展,1995,25(3):424-429. 被引量:7
  • 3周焕林,牛忠荣,王秀喜.三维位势问题边界元法中几乎奇异积分的正则化[J].计算物理,2005,22(6):501-506. 被引量:11
  • 4张耀明,吕和祥,王利民.位势平面问题的新的规则化边界积分方程[J].应用数学和力学,2006,27(9):1017-1022. 被引量:12
  • 5CHEN J T, WU A C. Null-field approach for piezoelectricity problems with arbitrary circular inclusions [J]. Engng Anal Bound Elem, 2006,30 (11): 971- 993.
  • 6LIU Y J. On the simple solution and non-singular nature of the BIE/BEM-a review and some new results [J]. Engng Anal Bound Elem, 2000, 24 (10) : 286- 292.
  • 7Jun L, Beer G, Meek J L. EffiCient evaluation of integrals of order using Gauss quadrature[J]. Engng Anal, 1985,2(3):118-23.
  • 8Gao X W, Yang K, Wang J. An adaptive element subdivision technique for evaluation of various 2D singular boundary integrals[J]. Engng Anal Bound Elem, 2008,32(8) : 692-696.
  • 9Earlin Lutz. Exact Gaussian quadrature methods for near-singular integrals in the boundary element method[J]. Engng Anal Bound Elem, 1992,9 (3):233- 245.
  • 10NIU Zhong-rong, CHENG Chang-zheng, ZHOU Huan-lin, et al. Analytic formulations for calculating nearly singular integrals in two-dimensional BEM[J]. Engng Anal Bound Elem ,2007,31(2) : 949-964.

共引文献28

同被引文献17

  • 1牛忠荣,王左辉,胡宗军,周焕林.二维边界元法中几乎奇异积分的解析法[J].工程力学,2004,21(6):113-117. 被引量:13
  • 2Bouzakis K D, Vidakis N. Prediction of the fatigue behavior of physically vapor deposited coatings in the ball-on-rod rolling contact fatigue test, using an elastic-plastic finite elements method simulation[J]. Wear, 1997, 206(1/2) : 197-203.
  • 3Dobrzahski L A, :liwa A, Kwasny W. Employment of the finite element method for determi- ning stresses in coatings obtained on high-speed steel with the PVD process [ J]. Journal of Materials Processing Technology, 2005, 164/165 : 1192-1196.
  • 4GAO Xiao-wei, Davies T G. Adaptive integration in elasto-plastic boundary element analysis[J]. Journal of the Chinese Institute of Engineers, 2000, 23(3) : 349-355.
  • 5Ma H, Kamiya N. Domain supplemental approach to avoid boundary layer effect of BEM in e- last]city [ J ]. Engineering Analysis With Boundary Elements, 1999, 23 ( 3 ) : 281- 284.
  • 6Qin X Y, Zhang J M, Xie G Z, Zhou F L, Li G Y. A general algorithm for the numerical evalua- tion of nearly singular integrals on 3D boundary element [ J ]. Journal of Computational and Applied Mathematics, 2011, 235(14) : 4174-4186.
  • 7Johnston P R, Johnston B M, Elliott D. Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals[J]. Engineering Analysis With Boundary Elements, 2013, 37(4) : 708-718.
  • 8Gu Y, Chen W, Zhang C Z. The sinh transformation for evaluating nearly singular boundary el- ement integrals over high-order geometry elements[J]. Engineering Analysis With BoundaryE/ements, 2013, 37(2): 301-308.
  • 9NIU Zhong-rong, CHENG Chang-zheng, ZHOU Huan-lin, HU Zong-jun. Analytic formulations for calculating nearly singular integrals in two-dimensional BEM[ J]. Engineering Analysis With Boundary Elements, 2007, 31(12) : 949-964.
  • 10Gao X W, Zhang C, Sladek G, Sladekc V. Fracture analysis of functionally graded materials by BEM[J]. Composites Science and Technology, 2008, 68(5) : 1209-1215.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部