期刊文献+

关于差分算子Δ的一些算子恒等式及其应用

Some identities related to difference operator and their applications
下载PDF
导出
摘要 利用发生函数得到了关于差分算子Δ的一些算子恒等式,并且讨论了它们在组合恒等式中的应用;给出了关于Bernoulli多项式、Bernoulli数、Stirling数等特殊组合数的一些递推关系和组合恒等式. In this paper,some operator identities concerning difference operator are given in terms of generating function,and the applications are discussed in combinatorial identities.We also obtain some recurrence relations and identities about the special combinatorial numbers,such as Bernoulli polynomials,Bernoulli numbers,Stirling numbers and so on.
出处 《山东理工大学学报(自然科学版)》 CAS 2011年第3期70-73,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 差分算子 BERNOULLI多项式 微分算子 发生函数 恒等式 difference operator Bernoulli polynomial differential operator generating function identity
  • 相关文献

参考文献7

  • 1Rona G C, Kahaner D, Odlyzko A. Finite operator calculus[J]. Journal of Mathematical Analysis and Applications, 1973, 42: 684-760.
  • 2Liu H M, Wang W P. Some identities on the Bernoulli,Euler and Genocehi Polynomials via power sums and alternate power sums[J]. Discrete Mathematics, 2009,309 : 3 346-3 363.
  • 3John Riordan. Combinatorial identities[M]. New York: John Wiley and Sons,1968.
  • 4Yang S. An identity of symmetry for the Bernoulli Polynomials [J]. Discrete Math, 2008,308(4) : 550-554.
  • 5Srivastava H M. Remarks on some relationships between the bernoulli and euler polynorn-Ials[J]. Applied Mathematics Let- ters,2004,17 : 375-380.
  • 6He T X, Leetsch C Hsu,Peter J S Shiue. Multivaruate expan- sion associated with Sheller-type polynomials and operators[J]. Bull. Inst. Math. Acad. Sin, 2006,4:451-473.
  • 7冯玉翠.二元Bernoulli多项式的若干性质[J].洛阳师范学院学报,2009,28(2):27-29. 被引量:1

二级参考文献4

  • 1Gabriella Bretti, Pierpaol Natalini, Paolo E Ricci, Generalizations of the Bernoulli and Appell polynomials [ J ]. Abstract and Applied Analysis, 7 (2004) 613 - 623.
  • 2G Dattoli, P E Ricci, H M Srivastava. Two-indexmuhidimensional Gegenbauer polynomials and their integral representations[ J ]. Math. Comput. Modelling 37 (2003), no. 3-4, 283-291.
  • 3L Carlitz, Weighted Stirling numbers of the first and second kinds I[J]. Fibonacci Quart, 18 (1980), 147-162.
  • 4L Carlitz, Weighted Stifling numbers of the first and second kinds II[ J ]. Fibonacci Quart, 18 ( 1980), 242 - 257.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部