摘要
给出了有界区域D 上的稳态对流扩散方程Δu/2 + b ·u = 0 的解u 可表成如下形式u(x)= Ex φ(Bτ)exp (∫τ0b(Bs)dBs- 12∫τ0|b(Bs)|2ds) x∈D的两个等价条件(这里Bt 是Brow n 运动,τ是D的首出时,φ是D上可测函数)。证明了稳态对流扩散方程随机Dirichlet 问题解的存在唯一性。
In this paper,two equivalent conditions for a solution u in a domain D of the steady state convection diffusion equation Δu/2+b·u=0 to be expressed as follow: u(x)=E xφ(B τ) exp (∫ τ 0b(B s) d B s-12∫ τ 0|b(B s)| 2 d s) x∈D (where B τ is a Brownian motion, τ is the exit time of D , φ is a measurable function on D ) are given. The exist and uniqueness of solution of the stochastic problem for the equation is proved.
出处
《工程数学学报》
CSCD
北大核心
1999年第4期46-50,共5页
Chinese Journal of Engineering Mathematics