摘要
研究了单位球面Sn+ 1 中Clifford 极小超曲面Mm ,n- m 及常平均曲率超曲面Sn- 1(r) ×S1( 1 - r2) 的谱特征,证明了如果Sn+ 1 中极小超曲面的满足适当条件的二组谱集和Mm ,n- m 的二组谱集相同,则该超曲面必是Mm ,n- m 。如果Sn+ 1 中的常平均曲率超曲面的三组满足条件的谱集和Sn- 1(r)×S1( 1 - r2)的三组谱集相同,则该超曲面必是Sn- 1(r) ×S1( 1 - r2)。
The author studies spectral characterization of Clifford minimal hypersurfaces M m,n-m and closed hypersurfaces h(r) with the constant mean curvature H in sphere S n+1 . The following is proven. (1) Let M be a closed minimal hypersurface in S n+1 . If Spec p(M)= Spec p(M m,n-m ) where p=i,j, 0≤i,j≤n/2, n>3 and i(n-i)+j(n-j)≠(2n 2-n+3)/9 , then M is M m,n-m . (2) Let M be a closed hypersurface with the same constant mean curvature H as H(r) s in S n+1 . If Spec p(M)= Spec p(H(r)), p=i,j,k, 0≤i,j,k≤n/2, n>3 , then M is H(r) .
出处
《工程数学学报》
CSCD
北大核心
1999年第4期63-67,共5页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金