摘要
用NG(u)表示一个图G中任意点u的邻域集.本文主要证明了下述结果:设G是无环图,对G中任意相邻的点u和υ,即uυ∈E(G),若如下两条件之一满足:(1)|NG(u)∩NG(υ)≥2;(2)G是2-点连通的图,且|NG(u)∩NG(υ)|≥1,则G是上可嵌入的.
Let NG(u) denote the neighboring set of a vertex u in G. This paper mainly proves the following result: let G be a graph without loops, for any two adjacent vertices u and v of G, i.e., uv E E(G), if at least one of the following two conditions satisfies: (1)|NG(u)∩NG(υ)≥2; (2) G is 2-vertex-connected graph and|NG(u)∩NG(υ)|≥1 , then G is upper embeddable.
出处
《应用数学学报》
CSCD
北大核心
1999年第4期589-592,共4页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金