期刊文献+

图的上可嵌入性的邻域条件 被引量:5

NEIGHBORING CONDITION ON UPPER EMBEDDABILITY OF GRAPHS
原文传递
导出
摘要 用NG(u)表示一个图G中任意点u的邻域集.本文主要证明了下述结果:设G是无环图,对G中任意相邻的点u和υ,即uυ∈E(G),若如下两条件之一满足:(1)|NG(u)∩NG(υ)≥2;(2)G是2-点连通的图,且|NG(u)∩NG(υ)|≥1,则G是上可嵌入的. Let NG(u) denote the neighboring set of a vertex u in G. This paper mainly proves the following result: let G be a graph without loops, for any two adjacent vertices u and v of G, i.e., uv E E(G), if at least one of the following two conditions satisfies: (1)|NG(u)∩NG(υ)≥2; (2) G is 2-vertex-connected graph and|NG(u)∩NG(υ)|≥1 , then G is upper embeddable.
出处 《应用数学学报》 CSCD 北大核心 1999年第4期589-592,共4页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金
关键词 邻域 BETTI亏数 最大亏格 上可嵌入性 简单图 Neighbor Betti deficiency maximum genus upper embeddable
  • 相关文献

参考文献5

二级参考文献1

  • 1刘彦佩.若干典型图类的最大亏格[J]数学学报,1981(06).

共引文献57

同被引文献26

  • 1Huang YuanqiuDept.of Math.,Hunan Normal Univ.,Changsha 41 0 0 81 . Email:hyqq @public.cs.hn.cn.A NOTE ON THE MAXIMUM GENUS OF 3-EDGE-CONNECTED NONSIMPLE GRAPHS[J].Applied Mathematics(A Journal of Chinese Universities),2000,15(3):247-251. 被引量:2
  • 2黄元秋,刘彦佩.图的上可嵌入性的一些表征[J].北方交通大学学报,1996,20(1):42-49. 被引量:5
  • 3Nordhaus E, Stewart B, White A. On the Maximum Genus of a Graph. J Combinatorial Theory B, 1971,11:258-267.
  • 4Skoviera M. The Maximum Genus of Graphs of Diameter Two. Discrete Math. 1991, 87:175-180.
  • 5Skoviera M. The Decay Number and the Maximum Genus of a Graph. Math Slovaca,1992,42(4):391-406.
  • 6Nebesky L. Every Connected, Locally Connected Graph is Upper Embeddabel. J Graph Theory, 1981, 5:205-207.
  • 7Nebesky L. On Locally Quaisconnected Graphs and Their Upper Embeddablity. Czechoslovak Math J, 1985,35:162-166.
  • 8Nedela R, Skoviera M. On Graphs Embeddable with Short Faces. Topics in Combinatorial and Graph Theory. R Bodendiek and R Henn(Eds), Physicaverlay, Heidelberg, 1990:519-529.
  • 9Skoviera M, Nedel R. The Maximum Genus of a Graph and Doubly Eulerian Trails. J U M Bollettino (Series B), 1990,4:541-551.
  • 10Nebesky L. N2-Locally Connected Graphs and Their Upper Embeddability. J Czechoslovak Math, 1991,41:731-735.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部