摘要
本文在算子单调性和紧性假设下研究了一类半线性算子方程Au-Tu+Cuf的可解性,其中A,T和C映实自反Banach空间X中的闭凸子集到它的对偶空间X*.我们的结果扩展或改进了Guan[1]最近宣布的全部结果.
in the present paper we obtain the solvability of the equation Au-Tu+Cufunder various assumptions of monotonicity and compactness on the operators A, T, and C whichmap closed convex subsets of a reflexive Banach space X into its dual space. The results extendand improve the recent ones obtained by Guan~[1].
出处
《系统科学与数学》
CSCD
北大核心
1999年第4期396-402,共7页
Journal of Systems Science and Mathematical Sciences
关键词
半线性算子方程
单调型算子
紧扰动
可解性
Semilinear operator equation, operator of monotone type, compact perturbation, solvability of the equation.