期刊文献+

Amann三解定理的改进及其应用 被引量:5

IMPROVEMENT ON AMANN'S THREE-SOLUTION THEOREM AND APPLICATIONS
原文传递
导出
摘要 本文对非线性泛函分析中著名的Amann三解定理作了本质性的改进,并将其结果应用到核函数不恒为正的Hammerstein型积分方程,得到了新的结论. in this paper, we have improved the famous Amann's three--solution theorem[1,2]in nonlinear functional analysis, and have removed the forllwing conditions used by Amann:The cone is solid, the operator A is strongly increasing and A_e= A o Je|[u1,u2]e is a strict setcontraction. The improved Amann's three-solution theorem can be applied to Hammersteinintegral equations, where the kernel k(x, y) is not everywhere positive.
作者 李福义
机构地区 山西大学数学系
出处 《系统科学与数学》 CSCD 北大核心 1999年第4期403-406,共4页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金 山西省青年科学基金
关键词 核函数 Amann三解定理 非线性泛函分析 Cone, fixed point index, kernel k(x, y).
  • 相关文献

参考文献2

  • 1郭大钧.Hammerstein型非线性积分方程正解的个数[J].数学学报,1979,22(5):584-584.
  • 2郭大均,数学学报,1979年,22卷,5期,584页

共引文献6

同被引文献19

  • 1周友明.Banach空间中二阶微分方程的周期边值问题[J].应用数学学报,2006,29(3):436-444. 被引量:11
  • 2Xu Xian, Sun Jingxian. On sign-changing solution for some three-point boundary value problems. Nonlinear Analysis, 2004, 59: 491-505.
  • 3Xu Xian, Regan D O. A three solutions theorem for nonlinear operator equations in ordered Banach spaces. Positivity, 2006, 10(4): 647-667.
  • 4Davis J M, Eloe P W, Henderson J. Triple positive solutions and dependence on higher order derivatives[J]. J Math Anal Appl,1999, 237:710-720.
  • 5Davis J M, Henderson J, Wong P J Y. General Lidstone problems: Multiplicity and symmetry of solutions[J]. J Math Anal Appl,2000, 251:527-548.
  • 6Li F, Zhang Y. Multiple symmetric nonnegative solutions of second-order ordinary differential equations[J].Appl Math Lett,2004, 17:261-267.
  • 7Avery R I. A generalization of the Leggett-Williams fixed point theorem[J]. Math Sci Res Hot-Line,1999, 3:9-14.
  • 8Li F, Han G. Generalization for Amann's and Leggett-Williams' three-solution theorems and applications[J]. J Math Anal Appl, 2004, 298:638-654.
  • 9AVERY R I. A generalization of Leggett-Williams fixed point theorem[ C ]. Math. scl. Res. Hot-Line, 1999(3) : 9-14.
  • 10BAI Z,WANG H. On positive solutions of some nonlinear fourth-order beam equations[J]. J. Math. Anal. Appl,2002, 270:357-368.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部