期刊文献+

在条件lim(n→∞)(infP(X_n= 0)>0)下的一类独立随机变量和的收敛定理

Theorems on Convergence of Sums of Independent Random Variables under the Condition lim(n→∞)(infP(X_n= 0)>0)
下载PDF
导出
摘要 设{X_n,n≥ 1}是一独立随机变量序列.受概率数论中Erdos猜想的启发,我们研究了在条件lim(n→∞)(infP(X_n= 0)>0)下的独立项级数sum from n=1 X_n的 a.s.收敛性,并且获得了该级数a.s.收敛的两个充分必要条件和一个充分条件.这些定理分别改进了文献[3]、[5]中关于Erdos猜想的研究结果. Let {X_n, n ≥ 1} be a sequence of independent random variables. Motivated by a conjecture of Erdos in probabilistic number theory, we assume n→∞liminP(X_n = 0) > 0 and investigate the a.s. convergence of sum for n=1 X_n. In this paper, we obtain two 'sufficient and necessary' conditions and one 'sufficient' condition of the a.s. convergence of sum for n=1 X_n. In particular, we have improved the related results in [3]. [5].
机构地区 安徽大学
出处 《应用概率统计》 CSCD 北大核心 1999年第4期402-410,共9页 Chinese Journal of Applied Probability and Statistics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部