期刊文献+

基于几何结构失真模型的图像质量评价研究 被引量:8

Image Quality Assessment Based on Geometric Structural Distortion Model
下载PDF
导出
摘要 客观图像质量评价研究的目的是设计一种和视觉感知保持一致,且适用于各种失真模型的质量评价方法.传统的结构相似度量质量评价方法忽视了自然图像本身的特点,不能很好地评判某些失真类型图像.本文根据人眼视觉系统(Human visual system,HVS)在感知图像质量过程中的特点,探索自然图像的本征几何结构特征,考虑像素点的方向失真、幅度失真和方差失真,提出了一种新型的基于图像几何结构失真模型的完全参考质量评价方法.在标准数据库上的实验结果表明,本文方法适用于所有失真模型图像数据的质量评价,计算复杂度相对较低,得到的图像客观评价结果和主观评价方法具有更好的一致性,能够很好地反映人眼对图像质量的主观感受. The goal of objective image quality assessment research is to automatically predict perceived image quality in a perceptually consistent manner,which should generally include all distortion types.It is found there is some deficiencies in traditional structural similarity index for image quality assessment by ignoring the geometric features of natural images,which fails to measure some particular distortion types.Inspired by the researches of quality prediction of human visual system(HVS) and the intrinsically geometric structural features of natural images,a novel geometric structural distortion model based full reference image quality assessment method is proposed in this paper.The distortion comparisons of direction,magnitude,and covariance are considered in our proposed method.The experimental results on standard image database show that our method is generally good for all distortion types and has relatively low computational complexity.It has a good consistency with the subjective assessment of human beings,thus,can be used to describe the visual perception of image quality.
出处 《自动化学报》 EI CSCD 北大核心 2011年第7期811-819,共9页 Acta Automatica Sinica
基金 国家自然科学基金(71001105 70771109 70701038 71071160)资助~~
关键词 图像质量评价 几何结构失真 视觉感知 人眼视觉系统 Image quality assessment geometric structural distortion visual perception human visual system(HVS)
  • 相关文献

参考文献17

  • 1Sheikh H R, Sabir M F, Bovik A C. A statistical evalu- ation of recent full reference image quality assessment al- gorithms. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451.
  • 2Cheng G, Cheng L. Reduced reference image quality assess- ment based on dual derivative priors. Electronics Letters, 2009, 45(18): 937-939.
  • 3Suresh S, Babu R V, Kim H J. No-reference image quality assessment using modified extreme learning machine classi- tier. Applied Soft Computing, 2009, 9(2): 541-552.
  • 4Heeger D J, Teo T C. A model of perceptual image fi- delity. In: Proceedings of the IEEE International Confer- ence on Image Processing. Washington D.C., USA: IEEE, 1995. 343-345.
  • 5Bradley A P. A wavelet visible difference predictor. IEEE Transactions on Image Processing, 1999, 8(5): 717-730.
  • 6Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural simi- larity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 7Wang Z, Bovik A C. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117.
  • 8Chang J, Alain B, Ostromoukhov V. Structure-aware er- ror diffusion. ACM Transactions on Graphics, 2009, 28(5): 162.1-162.8.
  • 9Sheikh H R, Bovik A C. Image information arid visual qual- ity. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
  • 10Chandler M, Hemami S S. VSNR: a wavelct-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.

二级参考文献10

  • 1J L Mannos,J D Sakrison.The effects of a visual fidelity criterion on the encoding of images[J].IEEE Transactions on Information Theory,1974,20(4):525-536.
  • 2Sakrison D.On the role of the observer and a distortion mea-sure image transmission[J].IEEE Transactions on Communication,1977,25(11):1251-1267.
  • 3A B Watson.Digital Images and Human Vision[M].Cambridge,Massachusetts:The MIT Press,1993.179-206.
  • 4J Lubin.Vision Models for Target Detection and Recognition[M].Singapore:World Scientific Publishing,1995.245-283.
  • 5Sarnoff Corporation,JNDmetrix Technology[OL].Evaluation Version available:http://www.sarnoff.com/products-services/video-vision/jndmetrix/downloads.asp,2003.
  • 6VQEG,Final report from the video quality experts group on the validation of objective models of video quality assessment[OL].http://www.vqeg.org/,Mar.2000.
  • 7WANG Z,BOVIK A C,Lu L.Why is image quality assessment so difficult[A].IEEE International Conference Acoustics,speech,and Signal Processing[C].Orlando,2002.3313-3316.
  • 8WANG Z,BOVIK A C,SHEIKH H R.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 9Xiao-zhou Pan,Chun-ling Yang.An improved structural similarity for image quality assessment[A].Proc.of SPIE[C].Wuhan,China,2005,60441I-1-6044lI-9.
  • 10Laboratory for Image & Video Engineering,University of Texas at Austin,Live Image Quality Assess Database Release2[OL].http://live.ece.utexas.edu/research/quality/,2005.

共引文献61

同被引文献109

  • 1赵剡,宗云花,张世军,杨秋英.气动光学效应降晰函数辨识与图像复原[J].兵工学报,2005,26(2):188-191. 被引量:6
  • 2胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 3赵剡,李东兴,许东.抑制复原图像振铃波纹的频域循环边界算法[J].北京航空航天大学学报,2006,32(11):1290-1294. 被引量:11
  • 4杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 5Z .Wang, A C Bovik. Mean Squared Error: Love it or Leave it. A New Look at Signal Fidelity Measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117.
  • 6Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli. Image Quality Assessment: from Error Visibility to Structural Similarity. IEEE Trans. on Image Processing.2004, 13(4): 600-612.
  • 7Alekasndr Shnayderman,Alexander Gusev, Ahmet M. Eski- cioglu. An SVD-Based Grayscale Image Quality Measure for Local and Global Assessment. IEEE trans. Image Processing. 2006,15(2):422-429.
  • 8Damon M. Chandler,Sheila S. Hemami. A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images. IEEE Trans. Image Processing, 2007,16(9):2284-2298.
  • 9Hamid R.Sheikh, Alan C.Bovik. Image Information and Visual Quality. IEEE Trans. Image Procesing, 2006,15(2):430-444.
  • 10Guang-tan Zhai, Jian-fei Cai, Weisi Lin et al. Cross-Dimen- sional Perceptual Quality Assessment for Iw Bitrate Videos. IEEE Trans. on Multimedia, 2008, 10(7): 1316-1324.

引证文献8

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部