期刊文献+

输电线路防灾减灾安全销的设计 被引量:5

Design of safety pin to prevent disasters of transmission line
下载PDF
导出
摘要 对型号为5A-ZM4铁塔进行极限承载力计算,确定塔线分离控制荷载并设计出过载保护金具安全销,当导线、地线上的覆冰厚度超过极限荷载所对应的覆冰厚度时,安全销能使塔线自动分离防止倒塔和断线。采用增量加载非线性有限元法计算安全销的极限承载力,与设计的塔线分离控制荷载吻合。通过分析荷载位移曲线知安全销随着荷载的增加由初始的线弹性状态逐渐过渡到极限塑性破坏状态;并判断出安全销的微观裂纹发生顺序和宏观断裂。基于疲劳寿命预测理论,对安全销的疲劳寿命和寿命使用系数进行了预测,计算表明安全销的疲劳寿命达到要求。 The ultimate load capacity of the 5A-ZM4 transmission tower is calculated. The controlling load of tower-line separation is determined based on the calculation result and the cross-section of safety pin as overload protection hardware is designed. The safety pin can make transmission line dissociate from tower when ice thickness exceeds the value corresponding to the uhimate load. The ultimate load capacity of safety pin is analyzed by nonlinear finite element method, which is consistent with the designed controlling load of tower-line separation. It was shown that the safety pin status changes from elasticity to plasticity gradually as the loads increase by analyzing safety pin load-displacement curve. The order of the microcosmic crack of safety pin and the macroscopic fracture are judged by the crack formation criteria and compared with the step loading analysis results. Based on fatigue life-span prediction theory, the fatigue life and the fatigue usage factors of safety pin are predicted in ANSYS. The analysis result showed that the fatigue life of safety pin could meet the requirement.
出处 《中国电力》 CSCD 北大核心 2011年第7期44-47,共4页 Electric Power
基金 国家自然科学基金资助项目(50878040) 吉林省科技发展计划项目(201105061) 吉林省教育厅"十一五"科学技术研究项目(200843)
关键词 输电塔 安全销 增量加载 极限承载力 疲劳 transmission tower safety pin step loading ultimate load capacity fatigue
  • 相关文献

参考文献9

二级参考文献21

  • 1谢运华.三峡地区导线覆冰与气象要素的关系[J].中国电力,2005,38(3):35-39. 被引量:59
  • 2DL/T5154-2002架空送电线路杆塔结构设计技术规定[s].北京:中国电力出版社,2002.
  • 3Sakamoto Y. Snow accretion on overhead wires [ J ]. Philosophical Transactions of the Royal Society, 2000, 358 ( 1776 ) : 2941-2970.
  • 4Jamaleddine A, McClure G, Rousselet J, et al. Simulation of ice-shedding on electrical transmission lines using ADINA [ J]. Computers and Structures, 1993,47 (4 - 5 ) :523 - 536.
  • 5Watanabe Y. Flashover tests of insulators covered with ice or snow[ J]. IEEE Trans on Power Apparatus and Systems, 1978,97 (5) : 1788-1793.
  • 6O Nigol, P G Buchan. Conductor galloping part I - Den hartog mechanism[ J]. IEEE Transaction on Power and System, 1981,100 (2) :699-707.
  • 7Wang J, Lilien J L. Overhead electrical transmission line galloping : A full multi-span 3-DOF model, some applications and design recommendations [ J ]. IEEE Transactions on Power Delivery, 1998,13 (3) :909-916.
  • 8Makkonen L. Modeling power line icing in freezing precipitation[ C]. 7th International Workshop on Atmospheric Icing of Structures, 1996.
  • 9Vladimir Lugovoi, Sergey Chereshniuk. Calculation of the ice-wind loads on the overhead transmission lines[ R]. International workshop on atmospheric icing of Structures, 2002.
  • 10郑颖人 沈珠江 龚晓南.广义塑性力学-岩土塑性力学原理[M].北京:中国建筑工业出版社,2002..

共引文献188

同被引文献33

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部