摘要
设M是二维紧致、曲率K(M)≤0的Riemann流形.对任一x M,在M上类数≥3的点集非空且只有有限个点{α1,α2,…;αd}.用Kj表示αj的类数,即αj到x的最短测地线的条数.那么,M的Euler数X(M)可以表示为:X(M)=(d+1)=Kj.如果M上类数23的点只有一个,那么这个点是M上距离x最远的点.
Let M be any two dimensional compact Riemann manifolds of nonpositivecurvature. Fixing x M, there is a nonempty finite set {a1, a2,..., ad} of pointshaving type number ≥ 3. Let Kj denote the type number of aj, that is the number ofall minimal geodesics from aj to x. Then X(M) = (d + 1) where X(M)is Euler characteristic of M.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1999年第6期1029-1034,共6页
Acta Mathematica Sinica:Chinese Series