摘要
A Decomposition method for solving quadratic programming (QP) with boxconstraints is presented in this paper. It is similar to the iterative method forsolving linear system of equations. The main ideas of the algorithm are to splitthe Hessian matrix Q of the oP problem into the sum of two matrices N and Hsuch that Q = N + H and (N - H) is symmetric positive definite matrix ((N, H)is called a regular splitting of Q)[5]. A new quadratic programming problem withHessian matrix N to replace the original Q is easier to solve than the originalproblem in each iteration. The convergence of the algorithm is proved under certainassumptions, and the sequence generated by the algorithm converges to optimalsolution and has a linear rate of R-convergence if the matrix Q is positive definite,or a stationary point for the general indefinite matrix Q, and the numerical resultsare also given.
A Decomposition method for solving quadratic programming (QP) with boxconstraints is presented in this paper. It is similar to the iterative method forsolving linear system of equations. The main ideas of the algorithm are to splitthe Hessian matrix Q of the oP problem into the sum of two matrices N and Hsuch that Q = N + H and (N - H) is symmetric positive definite matrix ((N, H)is called a regular splitting of Q)[5]. A new quadratic programming problem withHessian matrix N to replace the original Q is easier to solve than the originalproblem in each iteration. The convergence of the algorithm is proved under certainassumptions, and the sequence generated by the algorithm converges to optimalsolution and has a linear rate of R-convergence if the matrix Q is positive definite,or a stationary point for the general indefinite matrix Q, and the numerical resultsare also given.
出处
《计算数学》
CSCD
北大核心
1999年第4期475-482,共8页
Mathematica Numerica Sinica
基金
国家自然科学基金!19971079和19601035
科学工程计算国家重点实验室部分资助