期刊文献+

在线支持向量机在数控铣床刀具磨损预测建模中的应用 被引量:3

The application of online support vector machine to tool wear prediction modeling of digital control milling machine
下载PDF
导出
摘要 刀具磨损的自动监测是现代制造技术的关键技术之一,是保证自动化加工顺利进行的前提之一。在实际生产当中,对刀具磨损的检测,不能停机检测而只能采取在线的间接监测方法。提出一种基于在线支持向量机的数控铣床刀具磨损的预测方法。结果表明,所提方法具有参数调整时间快、泛化能力强的优点,可以比较准确地监控刀具磨损。 The automatic monitoring of tool wear is one of the key technologies of modern manufacturing technology as well as one premise to ensure the automatic processing to go on well.In actual production,the detection of tool wear should employ indirect online monitoring instead of stop detection.Presents a tool wear prediction method of digital control milling machine based on online support vector machine.The result shows that the presented method with quick parameter adjustment time and good generalization ability can monitor the tool wear fairly accurately.
出处 《现代制造工程》 CSCD 北大核心 2011年第7期98-101,40,共5页 Modern Manufacturing Engineering
关键词 在线支持向量机 刀具磨损 预测建模 online support vector machine tool wear prediction modeling
  • 相关文献

参考文献13

  • 1曾祥超,陈捷.数控机床刀具磨损监测实验数据处理方法研究[J].机械设计与制造,2009(1):213-215. 被引量:11
  • 2Prickett P W, Johns C. An overview of approaches to end milling tool monitoring[ J]. International Journal of Machine Tools & Manufacture ( S0890-6955 ) , 1999,39 (2).
  • 3O' Donnell Garret, Young Paul, Kelly Kevin, et al. Towards the improvement of tool condition monitoring systems in the manufacturing environment of tool condition monitoring systems in the manufacturing environment [ J ]. Journal of Materials Processing Technology(S0924-0136) ,2001,119 ( 3 ).
  • 4Wang Haili, Shao Hua, Chen Ming. On-line tool breakage monitoring in turning [ J ]. Materials Processing Technology (S0924-0136) ,2003,139(5 ) : 237-242.
  • 5徐创文,陈花玲,刘晓斌.偏最小二乘回归在刀具磨损试验建模中的应用[J].系统仿真学报,2007,19(13):3115-3118. 被引量:8
  • 6高宏力,许明恒,傅攀.一种在线监测铣刀磨损量的新方法[J].中国机械工程,2005,16(12):1069-1072. 被引量:13
  • 7LIU X,LU W C,JIN S L,et al. Support vector regression applied to materials optimization of sialon ceramics [ J ]. Chemometrics and Intelligent Laboratory Systems, 2006, 82 (12) : 8214.
  • 8YANG S S, LU W C, CHEN N Y, et al. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes [ J ]. Journal of Molecular Structure .2005,719 ( 13 ) : 119-127.
  • 9ZHANG M, LI Z M, LI W H. Study on least squares support vector machines algorithm and its application [ C ]. Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, Hong Kong:IEEE,2005 : 1082-1085.
  • 10王定成,方廷健.一种基于支持向量机的内模控制方法[J].控制理论与应用,2004,21(1):85-88. 被引量:12

二级参考文献47

共引文献61

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部