期刊文献+

二粒子Boltzmann方程组的奇异扰动解法 被引量:3

On the Singular Perturbation Solution of Boltzmann Hierachy for Two-particles
下载PDF
导出
摘要 讨论了二粒子Boltzmann方程组的边界层解.为此我们先对未知变量进行了Fourier变换,然后运用前人的方法对变换后的函数进行展开.通过对未知变量做一些特殊的函数展开,得到了二粒子Boltzmann方程组的正规解和边界层解,并得到了边界层解的初级和高级近似. The boundary layer solution of the Bohzmann Hierarchy for two-particles are discussed. By using the method of previous work we formulate the Boltzmann Hierarchy with Fourier transform. By making some expansion to the new functions obtained above we get the normal solution and the boundary layer solution,and for the boundary layer solution the pri- mary approximation and high-order approximation of it are obtained.
出处 《应用数学》 CSCD 北大核心 2011年第3期434-442,共9页 Mathematica Applicata
基金 国家自然科学基金资助项目(10861008) 内蒙古工业大学科研项目(ZS201032)
关键词 二粒子Boltzmann方程组 正规解 边界层解 Boltzmann Hierarchy Normal solution Boundary layer solution
  • 相关文献

参考文献11

  • 1Grad H. Long Time Prediction in Dynamics[M]. New York, John Wiley and Sons, 1983.
  • 2Tsug6 S. Approch to the origin of turbulence on the basis of two- point kinetic theory[J]. Phys. Fluids, 1974,17(1) ;22-33.
  • 3Lewis M B. Kinetic theory of turbulent flows[J]. Phys. Fluids, 1975,18(3) :313-319.
  • 4Tsuge S,Sagara K. Arrhenius" law in turbulent media and an equaivalent tunnel effeet[J]. Combustion Science and Technology, 1978,18 : 179-189.
  • 5CHEN Tianquan. Hilhert-Enskog-Chapman expantion in the turbulent kinetic theory of gases I [J]. J. Star. Phys. ,1981,25(3):491-514.
  • 6宋金宝.宏观确定的BBGGKY方程列的奇异扰动解法[J].内蒙古大学学报(自然科学版),1989,20(1):37-49. 被引量:1
  • 7陈建宁.Boltzmann方程的两个解的平均作为二粒子Boltzmann方程系的解[J].数学物理学报(A辑),1990,10(3):259-272. 被引量:9
  • 8丁鄂江 黄祖洽.Boltzmann方程的奇异扰动解法.物理学报,1985,34(1):65-75.
  • 9牡丹,阿其拉图,敖继军.混合气体Boltzmann方程组的奇异扰动解法[J].内蒙古大学学报(自然科学版),2008,39(4):383-388. 被引量:3
  • 10Cercignani C. Theory and Application of the Boltzmann Equation[M]. Edinburgh: Scottish Academic Press, 1975.

二级参考文献5

  • 1陈天权,内蒙古大学学报,1984年,15卷,1页
  • 2丁鄂江 黄祖洽.Boltzmann方程的奇异扰动解法.物理学报,1985,34(1):65-75.
  • 3Cercignani C C. Theory and Applicatzcm of the Boltzmann Equation [M]. Edinburgh:Scottish Academic Press, 1975.
  • 4Chapman S,T G Cowling. The Mathematical Theory of the Non-Uniform Gases [M]. Cambridge: Cambridge Univereity Press, 1953.
  • 5张根凯.双线形Boltzmann积分算子的Бобьэ:ёбрылев变换的一个应用.内蒙古大学学报:自然科学版,1984,15(4):371-378.

共引文献9

同被引文献17

  • 1丁鄂江,黄祖洽.Bohzmann方程的奇异扰动解法(Ⅱ)初始层解[J].物理学报,1985,34(1).
  • 2Grad H. On the kinetic theory of rarefied gases[J]. Comm on Pure and Appl Math, 1949,2(4) :331-407.
  • 3Chen T Q. Hilbert-Enskog-Chapman Expansion in the Turbulent Kinetic Theory of Gases[J]. J star phys, 1981,25(3) :491-567.
  • 4丁鄂江,黄祖洽.Boltzmann方程的奇异扰动解法[J].物理学报,1984,33(5):722-728.
  • 5丁鄂江,黄祖洽.Boltzmann方程的奇异扰动解法(Ⅱ)初始层解[J].物理学报,1985,34(1):77-87.
  • 6Cercignani C. Theory and application of the Boltzmann equation [M]. Edinburgh and London:Scottish Academ- ic Press, 1975.
  • 7Grad, Harold. Correlations, Fluctuations, and Turbulence in a Rarefied Cas. Long-time Prediction in dynamics (Lakeway, Tex.,1981), 45-70, Nonequilib. Problems Phys. Sci. Biol., 2, Wiley, New York, 1983.
  • 8Tsug S. Approch to the Origin of Turbulence on the Basis of Two-point Kinetic Theory. Phys. Fluids, 1974, 17(1): 22-33.
  • 9Lewis M B. Kinetic Theory of Turbulent Flows. Phys. Fluids, 1975, 18(3): 313--319.
  • 10Tsug S, Sagara K. Arrhenius' Law in Turbulent Media and an Equivalent Tunnel Effect. Combustion Science and Technology, 1978, 18(5-6): 179-189.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部