期刊文献+

无穷可数个Brown运动驱动的随机微分方程解的分布唯一性及路径唯一性(英文)

On the Uniqueness in Law and the Pathwise Uniqueness for a SDE Driven by Countably Many Brownian Motions
下载PDF
导出
摘要 研究如下形式的随机微分方程Xti=xi+∑∞j=∫10tσsij(Xs)dBjs+∫0tbis(Xs)ds,i=1,2,…,n,(*)其中{Btj}j∞=1是相互独立的标准Brown运动的无穷可数序列.主要证明如下结论:1)解的分布唯一性蕴含了解的联合分布唯一性;2)解的分布唯一性与强解的存在性可以保证解的轨道唯一性.结论2)是Yamada定理的对偶命题. Consider the n-dimensional SDE Xii=xi+∞∑j=1∫l0σs^ij(X6)dBs^j+∫10bs^1(X5)ds,i=1,2…,n,(*)where{ Btj}j∞=1is an infinite sequence of independent standard Brownian motions. In this paper, we prove that the uniqueness in law for ( * ) implies the uniqueness of the joint distribution of a pair (X,B), and moreover we prove that the uniqueness in law for ( * ) together with the strong existence,guarantees the pathwise uniqueness.
出处 《应用数学》 CSCD 北大核心 2011年第3期527-531,共5页 Mathematica Applicata
基金 Supported by QJNYF(2009QN015) NNSFC(10901065)
关键词 弱解 强解 分布唯一性 轨道唯一性 Levy引理 Weak solutions Strong solutions uniqueness in law Pathwise unique--ness gevy's characterization theorem
  • 相关文献

参考文献8

  • 1Cherny A S. On the uniqueness in law and the pathwise uniqueness for stochastic diflerential equations[J].Theorem Probab. Appl. ,2001,46(3) :406-419.
  • 2CAO Guilan, HE Kai. On a type of stochastic differential equations driven by countably marly Brownian motions[J]. J. Funm. Anal. ,2003,203 :262-285.
  • 3Cherny A S. On the strong and weak solution of stochastic dif{erential equations governing Bessel process [J].Stochastic and Stochastic Rep. , 2000,70 : 213-219.
  • 4ZtlANG Gongqing. Functional Analysis[M]. Beijing.. University of Beijing Press, 1987.
  • 5H U Shigeng. Applied Functional Analysis[M]. Beijing : Science Press, 2006.
  • 6ZONG Fengxi,LI Rubing. Strong solutions of SDE driven by countably many Brownian motions[J].Jour-nal of Yunnan University o{ Nationalities,2010,19(5):347-351.
  • 7HUANG Zhiyuan. Fundation of Stochastic Analysis[M]. Beijing:Science Press, 2000.
  • 8ZONG Fengxi, LI Rubing. Properties of countably many Brownian motions[J].Journal of Shandong Nor real University, 2009,24 (2) : 91-92.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部