期刊文献+

随机矩阵乘积的尾概率(英文)

On Tail Probability of Products of Random Matrices
下载PDF
导出
摘要 在一定条件下,本文给出了一列正随机矩阵乘积的尾概率估计,它以指数的速度消失;然后,在一维的情形,基于更新过程的残差等待时间的拉普拉斯变换,建立了极限常数的两种不同形式表达式之间的联系. In this paper,we give the tail probability estimate for the products of a sequence of positive i. i. d. random matrices. It decays with exponential rate. Moreover, in one dimensional case, based on the Laplace transform of the residual waiting time of a renewal process,we set up the connections between the two different forms of the limiting constant.
作者 王华明
出处 《应用数学》 CSCD 北大核心 2011年第3期581-586,共6页 Mathematica Applicata
基金 Supported by the Fundation of BUU(ZK201005X)
关键词 随机矩阵 更新过程 尾概率 Random matrix Renewal process Tail probability
  • 相关文献

参考文献8

  • 1Bremont J. On some random walks on Z in random medium[J]. Ann. Prob. , 2002,30(3) : 1266-1312.
  • 2Chung K L. A Course in Probability Theory[M]. New York: Academic Press, 1974.
  • 3Enriquez N, Sabot C,Zindy O. A probabilistie representation of constants in Kesten's renewal theorem [J]. Probab. Theory Relat. Fields, 2008,114 : 581-613.
  • 4Feller W. An Introduction to Probability Theory and its Applieations[M]. New York: Wiley, 1971.
  • 5Iglehart D L. Extreme values in the GI/G/1 queue[J]. An. Math. Stat. , 1972,143(2):627-635.
  • 6Kesten H. Random difference equatons and renewal theory of products of random matrices[J]. Acta. Math. ,1973,131:208-248.
  • 7Letehikov A. Localization of One-dimensional Random Walks in Random Environments[M]. New Jersey: Harwood Academic Publishers Chur. ,1989.
  • 8Oseledec V L. A multiplicative ergodic theorem: Ljapunov characteristic numbers for dynamical systems [J]. Trudy Moskov. Mat. Obshch. , 1968,19 : 197-231.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部