期刊文献+

分层实体制造快速成形工艺参数的人工神经网络预测 被引量:1

Rapid Prototyping Parameter Prediction for Laminated Object Manufacturing with Artificial Neural Network
下载PDF
导出
摘要 针对分层实体制造快速成形中工艺准备繁杂及工艺参数非线性的特点,提出分层实体制造快速成形工艺参数预测的人工神经网络方法,建立相应的人工神经网络模型。 The relationship between working parameters and laminating quality of Laminated Object Manufacturing (LOM) is highly nonlinear. Preparation of LOM working parameters is often a trial-and-error process, which is both time and material consuming and needs experienced operators. In order to make the LOM process more efficient in the parameter preparation, an artificial neural network (ANN) approach for parameter prediction for LOM is proposed and the corresponding ANN model is established. The rationality and feasibility of the model is experimentally verified to be reasonable and acceptable.
机构地区 天津大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 1999年第12期1347-1348,共2页 China Mechanical Engineering
基金 国家重点科技项目 (攻关 )计划专题资助项目! ( 96 -A2 2 -0 2-0 43 )
关键词 人工神经网络 分层实体制造 参数预测 快速原型 artificial neural network (ANN) Laminated Object Manufacturing (LOM) parameter prediction rapid prototyping (RP)
  • 相关文献

参考文献2

二级参考文献3

共引文献235

同被引文献19

  • 1Maekawa K. Three-dimensional powder fabrication by laser sintering[A]. YAN Yong-nian. Proceedings of Second International Conference on Rapid Prototyping & Manufacturing [C]. Xi'an: Shanxi Science and Technology Press, 2002. 435 - 449.
  • 2McMains S, Smith J, Wang Jian-lin, et al. Layered manufacturing of thin-walled parts[A]. Proceedings of Detc00 2000 ASME Design Engineering Technical Conferences [ C ]. Bartimore, Maryland: ASME,2000. 1 - 9.
  • 3Hui S M, Choi K H, Hee S, et al. Determination of fabrication orientation and packing in SLS process[J].Journal of Materials Processing Technology, 2001,112: 236-243.
  • 4Pham D T, Dimov S, Lacan F. Selective laser sintering: applications and technological capabilities [J].Pron Instn Mech Engrs B, 1999, 213B: 435- 450.
  • 5Leong K F, Phua K K S, Chua C K, et al. Fabrication of porous polymeric matrix delivery devices using the selective laser sintering technique[J]. Proc Instn Mech Engrs H, 2001, 215H: 191-202.
  • 6McMains S, Smith J, Sequin C. The Evolution of a layered manufacturing interchange format [A]. Proceedings of Detc02 ASME Design Engineering Technical Conference [ C]. Montreal, Quebec, Canada:ASME, 2002. 1 - 9.
  • 7Bugeda G, Cervera M, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes[J]. Rapid Prototyping Journal, 1999, 5(1): 21- 30.
  • 8Williams J D, Decard C R. Advances in modeling the effects of selected parameters on the SLS process[J].Rapid Prototyping Journal, 1998, 4(2) : 90 - 96.
  • 9Ian G, Shi D. Material properties and fabrication parameters in selective laser sintering process[J]. Rapid Prototyping Journal, 1997, 3(4):129 - 135.
  • 10Chen J H, Yea Y Z. Neural network-based predictive control for multivariable processes [J]. Chem Eng Comm, 2002, 189: 865-894.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部