期刊文献+

迭代容积卡尔曼滤波算法及其应用 被引量:43

Iterated cubature Kalman filter and its application
下载PDF
导出
摘要 将Gauss-Newton迭代和容积卡尔曼滤波(cubature Kalman filter,CKF)算法相结合,建立了一种迭代CKF(iterated CKF,ICKF)算法。该算法使用容积数值积分原则直接计算非线性随机函数的均值和方差,且在迭代过程中利用最新量测信息并改进迭代过程产生的新息方差和协方差,可获得较高的估计精度。针对弹道系数未知的再入弹道目标状态估计问题,仿真实验结果显示,该方法实现简单,比无迹卡尔曼滤波方法(unscentedKalman filter,UKF)及CKF方法效果要好。 An iterated cubature Kalman filter(ICKF) is proposed,which combines the Gauss-Newton iterate method with the cubature Kalman filter(CKF).In the ICKF algorithm,cubature rule based numerical integration method is directly used to calculate the mean and covariance of the nonlinear random function,and the latest measurement,improved innovation covariance and cross-covariance are iteratively used in the measurement update,so the higher accuracy of state estimate is achieved.The ICKF algorithm is applied to state estimation for reentry ballistic target with unknown ballistic coefficient.The simulation results indicate that the implementation of the proposed method is easy and simple.Moreover,the higher accuracy of state estimation is obtained compared with UKF and CKF.
作者 穆静 蔡远利
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1454-1457,1509,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60972146)资助课题
关键词 容积原则 容积卡尔曼滤波 再入弹道目标状态估计 cubature rule cubature Kalman filter state estimation for reentry ballistic target
  • 相关文献

参考文献19

  • 1Bar Shalom Y, Li X R. Estimation with applications to track ingand navigation[M]. New York: Wiley,2001:38]-395.
  • 2Grewal M S, Andrews A P. Kalman filtering: theoryand practice using matlab[M]. 2nd ed. New York, Wiley,2001 : 169 - 200.
  • 3Lefebvre T, Bruyninckx H, Schutter J D. Kalman filters for non-linear systems: a comparison of performance[J]. International Journal of Control ,2004,77(7) :639 - 653.
  • 4Julier S J, Uhlmann J K, Durrant-Whyten H F. A new method for the nonlinear transformation of means and covariances in filters and estimations[J]. IEEE Trans. on Automatic Control, 2000,45(3) :472 - 482.
  • 5Julier S J, Uhlmann J K. Unscented filtering and nonlinear esti mation[J]. Proceeding of the IEEE, 2004,92 (3) : 401 - 422.
  • 6Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems[J]. Automatica,2000,36 : 1627 - 1638.
  • 7Simandl M, Dunik J. Derivative free estimation methods: new results and performance analysis[J]. Automatica, 2009,45 (7) : 1749 - 1757.
  • 8Merwe R V D. Sigma-point filters for probabilistic inference in dynamic state space models [D]. America: Oregon Health Science University, 2004.
  • 9Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/ non-Gaussian Bayesian state estimation [J]. IEE Proceeding of F,1993,140(2) :107 - 113.
  • 10Arulampalam S, Askell S, Gordom N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].IEEE Trans. on Signal Processing,2002,50(2) :174 - 188.

同被引文献366

引证文献43

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部