期刊文献+

基于随机卷积的压缩感知雷达成像 被引量:11

Compressed sensing radar imaging based on random convolution
下载PDF
导出
摘要 压缩感知理论为解决传统高分辨雷达面临的大带宽信号采样、海量数据存储、传输与处理等问题提供了契机。基于随机卷积的压缩感知是一种通用有效的数据获取策略,且便于物理实现。研究了基于随机卷积的压缩感知雷达成像方法,对随机测量体系中降采样的不同实现方式进行分析和讨论。仿真和实测数据验证了成像方法的有效性,并对比分析了不同降采样方式下信噪比和样本数对成像性能的影响。 Compressed sensing(CS) theory provides great possibilities for resolving many problems associated with high resolution radar,such as the high sampling rate of large bandwidth,challenges to the memory,transmission and processing of immense data.CS by random convolution is a universally efficient data acquisition strategy and easy to realize.The radar imaging technique based on CS by random convolution is taken into research and different downsampling strategies in random measurement scheme are analyzed.Experiments from simulated data and real data verify the validity of the proposed imaging method,and the influences of signal to noise ratio(SNR) and sample number on imaging performance under different downsampling strategies are analyzed and compared.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1485-1490,共6页 Systems Engineering and Electronics
关键词 雷达成像 压缩感知 随机卷积 降采样 radar imaging compressed sensing(CS) random convolution downsampling
  • 相关文献

参考文献15

  • 1Donoho D I.. Compressed sensing[J]. IEEE Trans. on In for marion Theory, 2006,52(4) :1289 - 1306.
  • 2Candes E J. Compressive sampling[C]// Proc. of the International Congress of Mathematicians ,2006 : 1433 - 1452.
  • 3Baraniuk R G. A lecture on compressive sensing[J]. IEEESig hal Processing Magazine, 2007,24 (4) : 118 - 121.
  • 4黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2006.
  • 5Onhon N, Cetin M. A nonquadratic regularization-based tech nique for joint SAR imaging and model error eorrection[C]// Proc. of the SPIE Algorithms for Synthetic Aperture Radar Imagery XVI, 2009,73370C: 1 - 10.
  • 6Zhang L, Xing M D, Qiu C W, et al. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J]. I EEE Geoseienee and RemoZe Sensing Letters, 2009,6 (3): 567 - 571.
  • 7Yoon Y S, Amin M G. Imaging of behind the wall targets using wideband beamforming with compressive sensing[C]// Proc. of the IEEE/SP 15th Workshop on Statistical Signal Processing, 2009:93 - 96.
  • 8Yu Y, Petropulu A P, Poor H V. Compressive sensing for MIMO radar[C]// Proc. of the I EEE International Conference on Acous tics, Speech and Signal Processing, 2009 : 3017 - 3020.
  • 9Gurbuz A C, McClellan J H, Scott Jr. W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs[J]. IEEE Trans. on Signal Processing, 2009 (7):2640 - 2650.
  • 10Romberg J. Compressive sensing by random convolution[J]. SIAM Journal on Imaging Sciences ,2009,2(4) : 1098 - 1128.

共引文献46

同被引文献231

  • 1文树梁,袁起,秦忠宇.宽带线性调频信号Stretch处理误差获取与补偿[J].系统工程与电子技术,2005,27(1):36-39. 被引量:7
  • 2朱兆达,邱晓晖,余志舜.用改进的多普勒中心跟踪法进行ISAR运动补偿[J].电子学报,1997,25(3):65-69. 被引量:25
  • 3Schwartz J, Steinberg B. Ultrasparse, ultrawideband arrays[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45 (2) 376-393.
  • 4Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proeeedings of the IEEE Radar Conferenee. Newark, N J, USA: IEEE, 2004:71-78.
  • 5Candes E. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain : [s. n. ], 2006 : 1433-1452.
  • 6Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489- 509.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306.
  • 8Candes E J, Romberg J. Practical signal recovery from random projections[C]//Proceedings of SPIE. San Jose, CA, USA: SPIE,2005:56-74.
  • 9Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86 (3): 533-548.
  • 10Kashin B. The widths of certain finite dimensional sets and classes of smooth functions[J]. Izv, Akad, Nauk SSSR, 1977,41(2) : 334-351.

引证文献11

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部