摘要
压缩感知理论为解决传统高分辨雷达面临的大带宽信号采样、海量数据存储、传输与处理等问题提供了契机。基于随机卷积的压缩感知是一种通用有效的数据获取策略,且便于物理实现。研究了基于随机卷积的压缩感知雷达成像方法,对随机测量体系中降采样的不同实现方式进行分析和讨论。仿真和实测数据验证了成像方法的有效性,并对比分析了不同降采样方式下信噪比和样本数对成像性能的影响。
Compressed sensing(CS) theory provides great possibilities for resolving many problems associated with high resolution radar,such as the high sampling rate of large bandwidth,challenges to the memory,transmission and processing of immense data.CS by random convolution is a universally efficient data acquisition strategy and easy to realize.The radar imaging technique based on CS by random convolution is taken into research and different downsampling strategies in random measurement scheme are analyzed.Experiments from simulated data and real data verify the validity of the proposed imaging method,and the influences of signal to noise ratio(SNR) and sample number on imaging performance under different downsampling strategies are analyzed and compared.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2011年第7期1485-1490,共6页
Systems Engineering and Electronics
关键词
雷达成像
压缩感知
随机卷积
降采样
radar imaging
compressed sensing(CS)
random convolution
downsampling