期刊文献+

基于粒子群-遗传的混合优化算法 被引量:34

Hybrid optimization algorithms based on particle swarm optimization and genetic algorithm
下载PDF
导出
摘要 提出了一种基于实数编码的粒子群优化和遗传算法的混合优化算法,该算法首先由粒子群优化进化一定代数后,将最优的M个粒子保留,去掉适应度较差的pop_size-M个粒子。然后以这最优的M个粒子的位置值为基础,选择复制得到pop_size-M个个体,并进行交叉、变异等遗传算法运算。最后将保留的M个粒子位置值与遗传算法进化得到新的pop_size-M个体合并形成新的粒子种群,进行下一代进化运算。该算法在进化过程中能进行多次信息交换,使两种算法互补性得到更充分的发挥。通过5个函数优化实例与其他多种算法的对比研究,表明该算法收敛性能好,运算速度快,优化能力强。此外,还研究了最优粒子保留规模M以及粒子群优化进化较少代数规模对算法性能的影响。 This paper develops a hybrid optimization algorithms based on particle swarm optimization(PSO) and genetic algorithm(GA).Firstly,the population are evolved a certainty generations by PSO and the best M particles are retained while the other pop-size-M particles are removed.Secondly,generate pop-size-M new individuals by implementing selection,crossover and mutation operators of GA according to the remaining best M particles.Finally,put the pop-size-M new individuals into the remaining best M particles to form new population for next generation.The algorithm can exchange information several times during the evolvement process,so that the complement of two algorithms can be more fully exploited.The proposed method is used to deal with 5 functions optimization problems,and the results obtained are compared with existent bibliography,showing an improvement over the published methods.Furthermore,this paper studies the impact of M scale on the algorithm performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1647-1652,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(70903066 70733005) 高等学校博士学科点专项科研基金(20100145120008)资助课题
关键词 粒子群优化 遗传算法 混合优化 性能分析 particle swarm optimization(PSO) genetic algorithm(GA) hybrid optimization performance analysis
  • 相关文献

参考文献15

  • 1Holland J H. Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence[ M]. USA : The University of Michigan Press, 1975.
  • 2Khorshidian H, Javadian N, Zandieh M, et al. A genetic alto rithm for JIT single machine scheduling with preemption and machine idle time [J]. Expert S vstetns with Applications, 2011,38(7) :7911 -7918.
  • 3屈巍,汪晋宽,赵旭,刘志刚.基于遗传算法的无线传感器网络覆盖控制优化策略[J].系统工程与电子技术,2010,32(11):2476-2479. 被引量:15
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proc. of the IEEE International Conference on Neural Net works,1995:1942-1948.
  • 5Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proc. of the 6th International Symposium on Micro Machine and Human Science, 1995 : 39 - 43.
  • 6杜荣华.一种促进PSO全局收敛的参数调整策略[J].系统工程与电子技术,2009,31(6):1454-1457. 被引量:9
  • 7Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information Processing Letters ,2003,85(6) :317 - 325.
  • 8ShiX H, Liang Y C, Lee H P, et al. An improved GA and a novel PSO GA based hybrid algorithm[J]. Informatiotz Pro cessing Letters ,2005,93(5) :255 - 261.
  • 9Assareh E, Behrang M A, Assari M R, et al. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran[J]. Energy, 2010,35(12) :5223-5229.
  • 10Gandelli A, Grimaccia F, Mussetta M, et al. Development and validation ofdifferem hybridization strategies between GA and PSO[C]// Proc. of the IEEE Cr, ngress on Evolutionary Computation, 20C7 : 2782 - 2785.

二级参考文献37

共引文献37

同被引文献327

引证文献34

二级引证文献389

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部