摘要
研究Rosenberg问题的对称性与守恒量.给出Rosenberg问题的Noether-Lie对称性的定义和判据,以及由Noether-Lie对称性导出Noether守恒量和Hojman守恒量.
The Noether-Lie symmetry and conserved quantities of the Rosenberg problem are studied. From the study of the Rosenberg problem,the Noether symmetry and the Lie symmetry for the equation are obtained, thereby the conserved quantities are deduced. Then the definition and the criterion for Noether-Lie symmetry of the Rosenberg problem are derived. Finally,the Noether conserved quantity and the Hojman conserved quantity are deduced from the Noether-Lie symmetry
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2011年第7期1-3,共3页
Acta Physica Sinica