期刊文献+

自旋轨道耦合作用对碳纳米管电子能带结构的影响 被引量:1

Electronic energy band structures of carbon nanotubes with spin-orbit coupling interaction
原文传递
导出
摘要 本文考虑自旋轨道耦合作用的情况下,采用紧束缚近似螺旋对称模型计算了单壁碳纳米管的电子能带结构.研究发现:对于Armchair型单壁碳纳米管,自旋轨道耦合作用和弯曲效应共同导致了费米面Dirac点附近电子能带结构的能隙;对于Zigzag型和手性单壁碳纳米管,自旋轨道耦合作用使得电子最高占据态和最低未占据态产生能级劈裂,能级劈裂的大小不但与碳纳米管的直径和手性角密切相关,而且相对于费米面是不对称的;根据指数(n,m)可以将Zigzag型和手性单壁碳纳米管分为金属性碳纳米管(ν=0)、第一类半导体性碳纳米管(ν=-1)和第二类半导体性碳纳米管(ν=1)三类,并呈现出与光学跃迁能极其类似的族效应.计算研究结果可以比较好地解释实验结果. Based on the symmetry adapted tight-binding model, the electronic energy band structures of single wall carbon nanotubes are calculated by considering the spin-orbit coupling interaction. The energy gaps at the Dirac point for the armchair nanotubes are formed due to the spin-orbit coupling interaction and the curvature effect. For the zigzag and chiral carbon nanotubes,the energy band splittings for the lowest unoccupied states and the highest occupied states are also formed by the spin-orbit coupling interaction. The energy splittings are not only dependedent on the diameter and the chiral angle of the carbon nanotubes, but also a symmetric with respect to the Fermi energy level. According to the chiral index (n, m) , different tube behaviors are grouped into three families. The numeral results are in good agreement with the experimental results.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第7期472-479,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10774184 10974015 11074292) 国家重点基础研究发展计划(973)项目(批准号:2007CB815101)资助的课题~~
关键词 单壁碳纳米管 自旋轨道耦合 紧束缚近似螺旋对称模型 single wall carbon nanotubes, spin-orbit coupling, symmetry adapted tight-binding model
  • 相关文献

参考文献2

二级参考文献39

共引文献23

同被引文献34

  • 1Sun Z, Ferrari A C 2011 Nat. Photonics 5 446.
  • 2Letokhov V S 1985 Nature 316 325.
  • 3Li Y F, Hu M L, Wang C Y, Zheltikov A M 2006 Opt. Express 14 10878.
  • 4Jiang T X, Wang G Z, Zhang W, Li C, Wang A M, Zhang Z G 2013 Opt. Lett. 38 443.
  • 5Jacobovitz-Veselka G R, Keller U 1992 Opt. Lett. 17 1791.
  • 6Li J F, Liang X Y, He J P, Lin H 2011 Chin. Opt. Lett. 9 071406.
  • 7Guo L, Hou W, Zhang H B, Sun Z P, Cui D, Xu Z, Wang Y G, Ma X Y 2005 Opt. Express 13 4085.
  • 8Zhu J F, Tian J R, Wang P, Ling W J, Li D H, Wei Z Y 2006 Chin. Phys. 15 2022.
  • 9Song Y J, Hu M L, Xie C, Chai L, Wang C Y 2010 Acta Phys. Sin. 59 7105 (in Chinese).
  • 10Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部