摘要
设G是有限群,在这篇短文中,我们证明了下面的定理:定理 如果Aut(G)二重可迁地作用在G的所有同阶元集合上,则G同构于下列三群之一:(Ⅰ)3阶循环群(Ⅱ)3次对称群(Ⅲ)2~α阶初等Abel群,α>1.
Let G be a finite group and let M be the set of elements of order i. In this paper, the author has proved the following result: .Theorem If the action of Aut(G) on all Mi is double transitive, then G is isomorphic to one of the groups of the following list:( I ) Cyclic group of order 3.( II ) Symmetric group of degree 3.( III ) Elementary abelian 2-group of order 2, a>1.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1990年第1期144-146,共3页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
有限群
自同构群
阶
作用
二重可迁
order
action
automorphism group
double transitive