期刊文献+

基于粒子群算法的高光谱影像端元提取技术 被引量:1

Particle swarm optimization for endmember extraction in hyperspectral imagery
原文传递
导出
摘要 基于凸面几何学理论,由端元作为角点的单形体的体积应该是最大的。著名的N-FINDR和SGA算法正是基于以上理论,通过在数据云中寻找体积最大的单形体来实现端元的自动提取。本文利用粒子群优化(PSO)技术,基于凸面几何学理论,设计了一个新的端元提取算法。利用模拟和真实高光谱影像对其进行了实验,并将其结果与N-FINDR和SGA算法的结果进行了比较分析。 Based on convex geometry theory, the simplex with vertices that are given by the spectra of the endmembers has the big- gest volume. N-FINDR and SGA which based on convex geometry theory are popular endmember extraction algorithms. They select the simplex which has the biggest volume in the data cloud to extracting endmembers automatically. An endmember extraction method that is based on Particle Swarm Optimization (PSO) and convex geometry theory was developed in this paper. It carried out the experiments by simulative and real hyperspectral imageries. As well as it compared and analyzed the results among the PSO, N-FINDR and SGA.
出处 《测绘科学》 CSCD 北大核心 2011年第4期16-18,30,共4页 Science of Surveying and Mapping
关键词 高光谱影像 粒子群算法 线性混合模型 端元提取 N—FINDR hyperspectral imagery particle swarm optimization linear mixture model endmember extraction N-FINDR
  • 相关文献

参考文献9

  • 1杨国鹏,余旭初.高光谱遥感影像的广义判别分析特征提取[J].测绘科学技术学报,2007,24(2):130-132. 被引量:7
  • 2余旭初,冯伍法,林丽霞.高光谱──遥感测绘的新机遇[J].测绘科学技术学报,2006,23(2):101-105. 被引量:24
  • 3A Chowdhury, M S Alam. Fast Implementation of N- FINDR Algorithm for Endmember Determination in Hy- perspectral Imagery [ C ] //Proceedings of SPIE, 2007, 656526: 1-7.
  • 4J. Kennedy, R. Eberhart. Particle Swarm Optimization[ C ] //Proceedings of IEEE International Conference on Neural Networks, 1995, 4: 1942-1948.
  • 5M. E. Winter. N-FINDR: An algorithm for fast autono- mous spectral end-member determination in hyperspectral data [ C ] //Proceedings of SHE, 1999, 3753: 266-275.
  • 6M. E. Winter. Maximum volume transform for endmember spectra detection [ C ] // Hyperspectral Data Exploita- tion. Manhattan : Wiley. 2007 : 179-203.
  • 7廖子贞,罗可,周飞红,傅平.一种自适应惯性权重的并行粒子群聚类算法[J].计算机工程与应用,2007,43(28):166-168. 被引量:13
  • 8李晓晴,焦素敏,张雪萍,朱淑琴,杜振芳.基于粒子群优化的带障碍约束空间聚类分析[J].计算机工程与设计,2007,28(24):5924-5927. 被引量:11
  • 9C I Chang, C C Wu, W M Liu et al.A New Growing Method for Simplex-Based Endmember Extraction Algo- rithm [ C ] //IEEE Transactions on Geoscience and Re- mote Sensing, 2006, 44(10) .

二级参考文献21

  • 1李建勇,俞欢军,张丽平,陈德钊.基于Java多线程技术实现的粒子群优化算法[J].计算机工程,2004,30(22):134-136. 被引量:5
  • 2刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 3刘靖明,韩丽川,侯立文.一种新的聚类算法——粒子群聚类算法[J].计算机工程与应用,2005,41(20):183-185. 被引量:25
  • 4[3]Hsieh P F,Landgrebe D A.Classification of high dimensional data[D].Indiana:Purdue University,1998.
  • 5[4]John Shawe-Taylor,Nello Cristianini.Kernel Methods for Pattern Analysis[M].London:Cambridge University Press,2004:47-82.
  • 6[5]Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[A].Neural Networks for Signal Processing IX[C],1999:41-48.
  • 7[6]Baudat G,Fatiha Anouar.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,1(12):2385-2404.
  • 8Han Jiawei.数据挖掘概念与技术[M].北京:机械工业出版社,2005.
  • 9Ansari N,Hou E.用于最优化的计算智能[M].李军,边肇祺,译.北京:清华大学出版社,1999.
  • 10Kennedy j,Eberhart.Particle swarm optimization[C]//Proc IEEE Inr Conf on Neural Networks Perth,Australia,1995:1942-1948.

共引文献46

同被引文献2

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部