期刊文献+

基于粒子-蒙特卡洛模型的气体电子倍增探测器的研究

Simulation of a gas electron multiplier using a PIC-MCC model
下载PDF
导出
摘要 采用粒子-蒙特卡罗模型(Particle in Cell-Monte Carlo Collision,PIC-MCC)对气体电子倍增探测器(Gas electron multiplier,GEM)的倍增放大过程进行了模拟,这对更好的理解和把握GEM的物理机理具有重要的意义。在电场分析的基础上,从GEM空间粒子数和粒子的空间分布随时间的变化分析GEM的倍增过程,并建立GEM增益和各边界层收集到的电子个数之间的关系。研究结果为进一步利用该模型对GEM优化结构、选择工作参数及探讨物理机理建立了基础。 In this paper,a particle in cell-Monte Carlo collision model is used to investigate the process of electron avalanches in gas electron multiplier(GEM),which is of great benefit to understand the GEM physics mechanism.Based on analysis of the electric field effect,electron avalanches are investigated with the time-related particle numbers and distributions in the GEM space.The relations between the GEM gain and the particle numbers deposited on the boundaries are analyzed,too.The simulation results lay the foundation for optimizing the GEM structures,working conditions based on PIC-MCC model.
出处 《核技术》 CAS CSCD 北大核心 2011年第7期543-548,共6页 Nuclear Techniques
基金 国家自然科学基金(50907009 60871015)资助 国家863计划(2008AA03A308)
关键词 气体电子倍增探测器(GEM) 粒子-蒙特卡罗模型(PIC-MCC) 电子倍增 增益 Gas electron multiplier PIC-MCC model Electron avalanche Gain
  • 相关文献

参考文献11

  • 1Sauli F. A new concept for electron amplification in gas detectors [J]. Nucl Instr Meth, 1997, A386:531.
  • 2Bachmarm S, Bressan A, Kappler S, et al. Development and applications of the gas electron multiplier [J], Nucl Instru Meth, 2001, A471: 115-119.
  • 3Sauli F, Development and applications of gas electron multiplier detectors [J], Nucl Instru Meth, 2003, A505: 195-198.
  • 4Sharma A. 3D simulation of charge transfer in a Gas Electron Multiplier(GEM) and comparison to experiment [J], Nucl Instru Met, 2000, A454: 267-27l.
  • 5Bouianov O, Bouianov M, Orava R, et al. Progress in GEM simulation [J], Nucl Instru Meth, 2000, A450: 277-287.
  • 6Vahedi V, Surendra M. Monte Carlo collision model for particle-in-cell method: application to argon and oxygen discharges [J], Comput Phys Commun, 1998, 87:179-198.
  • 7Birdsall C K, Langdon A B. Plasma Physics via Computer Simulation [M], New York: McGaw-Hill, 1985.
  • 8Buneman O. Time reversible difference procedures[J], J Comput Phys, 1967, 1:517-535.
  • 9http://gdd.web.cem.ch/GDD/gemframing.res/gem_assem bly.pdf, [OL] 2011.4.30125.
  • 10周意,李澄,安少辉,许咨宗.GEM电极的三维电场分布计算[J].高能物理与核物理,2004,28(3):299-303. 被引量:6

二级参考文献7

  • 1Fabio Sauli. Nucl. Instr. and Meth., 2003, A505:195-198
  • 2LI Cheng, XU Zi-Zong. Nuclear Electronics & Detection Technology, 2000, 20(5):351(in Chinese)(李澄,许咨宗. 核电子学与探测技术,2000,20(5):351)
  • 3Bouianov O, Bouianov M, Orava R et al. Nucl. Instr. and Meth., 2000, A450:277-287
  • 4Bouianov O, Bouianov M, Orava R et al. Nucl. Instr. and Meth., 2001, A458:698-709
  • 53D Simulation of Charge Transfer in a Gas Electron Multiplier (GEM) and Comparison to Experiment. CERN-OPEN-99/373
  • 6Tomas Motos Lopez. Electrostatic Field Calculation of the Gas Electron Multiplier (GEM) Using Ansoft's 3D Field Simulator. CERN/IT/99/5
  • 7QIANG Yi. Research on the Properties of Avalanche in Gas Electron Multiplier, Thesis of University of Science and Technology of China, 2002(in Chinese)(强翼. GEM探测器气体放大性能研究,中国科学技术大学毕业论文,2002)

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部