期刊文献+

基于序列模式挖掘的读者借阅行为分析 被引量:12

The Analysis of Reader Borrow Behavior Based on Sequential Pattern Mining
下载PDF
导出
摘要 针对图书馆读者借阅事务中存在的序列特征,提出一种基于序列模式挖掘的读者借阅行为分析方法,其思想是通过将借阅事务转化为序列数据库,基于PrefixSpan算法来识别读者借阅行为序列模式。以某高校图书馆读者借阅事务数据为例,通过序列模式挖掘实验表明,此方法可有效获取读者借阅行为的时序规律,其结果在图书馆信息服务中具有一定的应用价值。 According to the sequence characteristics of borrowing hehavior of library readers,this paper proposes an analysis method of borrowing behavior based on sequential pattern mining.With this method,the borrowing behavior patterns of the readers are identified by PrefixSpan algorithm from sequence database transformed by borrowing services.Taking the borrowing transaction data of a university library reader as an example,a sequential pattern mining experiment is performed.The result shows that the timing rules of borrowing behavior can be obtained effectively with this method,which has some applying values in the information service of libraries.
机构地区 中南大学图书馆
出处 《图书情报知识》 CSSCI 北大核心 2011年第4期92-96,共5页 Documentation,Information & Knowledge
关键词 序列模式 读者借阅行为 PREFIXSPAN算法 数据挖掘 Sequential patterns Readers borrow behavior PrefixSpan algorithm Data mining
  • 相关文献

参考文献5

二级参考文献21

  • 1李继宏.数据挖掘及其在高校图书馆期刊管理中的应用[J].现代情报,2004,24(7):84-86. 被引量:10
  • 2鲍翠梅,王尊新,白如江.数据挖掘技术及其在图书馆中的应用[J].情报杂志,2004,23(9):49-51. 被引量:26
  • 3[1]Lee W and Stolfo S J. Data mining approaches for intrusion detection [C]. Proceedings of the 7th USENIX Security Symposium, 1998, (1):26~29.
  • 4[3]Lee W,Stolfo S J and Mok K W. A data mining framework for building intrusion detection models[J]. IEEE Symposium on Security and Privacy, 1999.
  • 5[4]Han J, Dong G and Yin Y. Efficient mining of partial periodic patterns in time series database[C]. Proc Int. Conf on Data Engineering(ICDE99) ,March 1999,105~ 115.
  • 6[5]Han J, Gong W and Yin Y. Mining segmen-wise periodic patterns in time-related database [C]. In:Proc, 1998 Int ′ l Conf. On Knowledge Discovery and Data Mining (KDD98), 1998, 214 ~218.
  • 7[1]Agrawal R, Sriaknt R. Mining Sequential Patters[A]. Proc of the 11th Int'l Conference on Data Engineering[C].Taipei,Taiwan,1995.
  • 8[2]Srikant R, Agrawal R. RJ 9994, Mining Sequential Patterns: Generalizations and Performance Improvements[R]. IBM Almaden Research Center, 1995.
  • 9[3]Pei J, Han J, Mortazavi-Asl B, et al. PrefixSpan: Mining Sequential Patterns Efficiently by PrefixProjected Pattern Growth[A]. Proc 2001 Int Conf Data Engineering (ICDE01)[C], 2001.215-224.
  • 10[4]Han J, Pei J, Mortazavi-Asl B, et al. Freespan:Frequentpattern-projected sequential pattern mining[A]. Proc 2000 Int Conf Knowledge Discovery and DataMining(KDD'00), 2000. 355-359.

共引文献40

同被引文献107

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部