期刊文献+

考虑压力追随效应的充气悬臂梁挠度计算模型与实验设计 被引量:3

DEFLECTION MODEL CONSIDERING PRESSURE FOLLOWING EFFECT AND TEST SYSTEM DESIGN OF AN INFLATABLE CANTILEVER BEAM
原文传递
导出
摘要 针对以往研究只考虑充气内压的预应力效应,且存在褶皱判据定义不科学的问题,该文依据薄膜材料褶皱的基本理论,采用"最小主应力为零"作为薄膜褶皱判据,以承受端部集中载荷而弯曲的充气悬臂梁为研究对象,基于Euler-Bernoulli梁模型,加入了压力追随效应修正,推导了充气悬臂梁挠度计算的基本方程,并给出了可行的求解方法及计算程序。搭建了充气悬臂梁非线性挠曲变形行为的实验平台,设计了力控制与位移控制相结合的加载方式,并采用非接触式的位移测量方式,进行了充气悬臂梁的弯曲挠度实验研究,分析了充气内压对充气悬臂结构承弯能力和弯曲刚度的影响。理论计算和实验结果的对比分析表明进行充气悬臂梁的弯曲挠度计算时,压力追随效应的贡献非常重要而不可忽视。 A calculated model based on Euler-Bernoulli beam is established by adopting the criterion of zero minor principal stress and considering effects of internal pressure.An iterative solving method is proposed and the corresponding program is created in MATLAB platform.Then an experiment set-up is designed to measure the deflection of an inflatable cantilever beam.A combined loading control method is used to apply the tip load on the beam,and the tip displacement is picked up by a laser displacement sensor.Comparisons between experimental and calculated results show that the pressure following effect contributes to its load-carrying capabilities and the bending stiffness is so evident that should not be neglected.
出处 《工程力学》 EI CSCD 北大核心 2011年第7期245-251,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10602045) 高等学校学科创新引智计划项目(B07050)
关键词 充气结构 非线性挠曲变形 充气压力 追随效应 实验系统 inflatable structures nonlinear deflection inflated pressure following effect test system
  • 相关文献

参考文献15

  • 1Jenkins C H. Gossamer spacecraft: Membrane and inflatable structures technology for space applications [M]. New York: AIAA, Inc., 2001.
  • 2Le van A, Wielgosz C. Finite element formulation for inflatable beams [J]. Thin-Walled Structures, 2007, 45: 221 --236.
  • 3Wielgosz C, Thomas J C. An inflatable fabric beam finite element [J]. Communications in Numerical Methods in Engineering, 2003, 19: 307--312.
  • 4Veldman S L, Vermeeren C A J R. Inflatable structures in aerospace engineering- An overview [C]. EuropeanConference on Spacecraft Structures, Materials and Mechanical Testing, ESTEC Noordwijk Netherland. European Space Agency, ESASP-468, 2001.
  • 5Comer R L, Levy S. Deflections of an inflated circular-cylindrical cantilever beam [J]. AIAA Journal, 1963, 1(7): 1652--1655.
  • 6Main J A, Peterson S W, Strauss A M. Load-deflection behavior of space-based inflatable fabric beams [J]. Journal of Aerospace Engineering, 1994, 7(2): 225-238.
  • 7Thomas C S R, Chris P C, Pier M, Ratan J. Static, buckling and dynamic behavior of inflatable beams [C].45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Newport Rhode Island. New York: AIAA, Inc., 2006.
  • 8Ficher W B. A theory for inflated thin-wall cylindrical beams [Z]. Washington: NASA, TN D-3466, 1966.
  • 9Le Van A, Wielgosz C. Bending and buckling of inflated beams: Some new theoretical results [J]. Thin Walled Structures, 2005, 43:1166-- 1187.
  • 10Wielgosz C, Thomas J C. Deflections of inflatable fabric panels at high pressure [J]. Thin-Walled Structures, 2002,40: 523--536.

二级参考文献13

  • 1DAVID W.Sleight,ALEXANDER Tessler,JOHN T.Wang.Structural Wrinkling Predictions For Membrane Space Structures[M].Analytical and Computational Methods Branch,NASA Langley Research Center,FEMCI Workshop,2002.
  • 2WAGNER H,BALLERSTEDT W.Tension Fields In Originally Curved Thin Sheets During Shearing Stresses[M].NACA Tech.Memoranda,1935.
  • 3REISSNER E.On tension field theory[J].Proc.V Int.Con.Appl.Mech,1938,88-92.
  • 4STEIN M,HEDGEPETH J M.Analysis Of Partly Wrinkled Membranes[M].NASA,Tech.Notes,D-813,1961.
  • 5MANSFIELD E H.Tension field theory[J].Proc.XII Int.Cong.Appl.Mech,1968,305-320.
  • 6MILLER R K,HEDGEPETH J M.An algorithm for finite element analysis of partly wrinkled membranes[J].Technical Note,AIAA Journal,1982,20(12):1761-1763.
  • 7MILLER R K,HEDGEPETH J M,et al.Finite element analysis of partly wrinkled membranes[J].Comp Struc,1985,20(1-3):631-639.
  • 8WONG Y W.Analysis Of Wrinkle Patterns In Prestressed Membrane Structures[M].MPhil Thesis,University of Cambridge,Department of Engineering,Cambridge,UK,2000.
  • 9WONG Y W,PELLEGRINO S.Computation of wri-nkle amplitudes in thin membranes[A].The 43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference[C].AIAA 2002-1369.
  • 10WONG Y W,PELLEGRINO S.Prediction of Wrinkle Amplitudes In Square Solar Sails[M].AIAA-2003-1221.

共引文献10

同被引文献31

  • 1刘平,付功义.充气膜结构的充气压力变形[J].工业建筑,2012,42(S1):290-293. 被引量:2
  • 2Jenkins C H.Progress in Astronautics and Aeronautics:Gossamer Spacecraft:Membrane and Inflatable Structures Technology for Space Applications[R].Reston,VA,USA:AIAA,2001.
  • 3Veldman S L,Vermeeren C.Inflatable structures in aerospace engineering:An overview[C]//Spacecraft Structures,Materials and Mechanical Testing.Noordwijk,2001,468:93-98.
  • 4Fang H,Lou M C.Analytical Characterization of Space Inflatable Structures:An Overview[R].Reston,VA,USA:AIAA 99-1272,1999.
  • 5Huang J.The development of inflatable array antennas[J].Antennas and Propagation Magazine,IEEE,2001,43(4):44-50.
  • 6Cadogan D P,Lin J K.Inflatable Solar Array Technology[R].Reston,VA,USA:AIAA,1999.
  • 7Comer R L,Levy S.Deflections of an inflated circular-cylindrical cantilever beam[J].AIAA Journal,1963,1(7):1652-1655.
  • 8Fichter W B.A Theory for Inflated Thin-Wall Cylindrical Beams[M].Washington DC,USA:National Aeronautics and Space Administration,1966.
  • 9Webber J P H.Deflections of inflated cylindrical cantilever beams subjected to bending and torsion[J].Aeronautical Journal,1982,86(858):306-312.
  • 10Main J A,Peterson S W,Strauss A M.Beam-type bending of space-based inflated membrane structures[J].Journal of Aerospace Engineering.1995,8(2):120-125.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部