期刊文献+

二元进化策略的收敛性分析 被引量:4

Convergence Analysis of Two-membered Evolution Strategy
下载PDF
导出
摘要 进化算法的理论研究,如收敛性、时间复杂性研究,是当前的一大热点和难点,有关的理论结果并不多。针对二元进化策略(1+1)ES建立时齐马尔科夫过程模型,利用连续状态马氏过程理论证明了与(1+1)ES相关联的马氏过程在一类连续优化问题中具有指数遍历性,在此基础上证明了(1+1)ES在求解此类优化问题时能以概率1最终找到最优解。所提出的分析方法为进化算法的理论研究提供了一条新思路。 The theoretical investigation to Evolutionary Algorithms,e.g.convergence analysis,runtime analysis,is currently a hot topic,and the related theoretical results are few despite many experimental results.This paper established a homogeneous Markov process model associated with(1+1)ES.It is proved by means of the theory of Markov process with continuous state that the Markov process associated with(1+1) ES has exponential ergodicity in a class of continuous optimization problem,hence the(1+1)ES can finally converge to the optimal solution with probability 1 when solving such a problem.The proposed analytic approach provides a new thought to the theoretical research of evolutionary algorithms.
出处 《计算机科学》 CSCD 北大核心 2011年第7期231-234,共4页 Computer Science
基金 国家自然科学基金(61070033 61003066) 教育部博士点基金(20090172120035) 中央科研业务费专项资金(2009ZM0052)资助
关键词 进化计算 进化策略 收敛性 连续优化 马尔科夫过程 Evolutionary computation Evolution strategy Convergence Continuous optimization Markov process
  • 相关文献

参考文献10

  • 1徐宗本,陈志平,章祥荪.遗传算法基础理论研究的新近发展[J].数学进展,2000,29(2):97-114. 被引量:45
  • 2姚新,徐永.Recent Advances in Evolutionary Computation[J].Journal of Computer Science & Technology,2006,21(1):1-18. 被引量:30
  • 3Rudolph G. Convergence of Non-elitist Strategies[C]//Procee-dings of the First IEEE Conference on Evolutionary Computa- tion. Orlando: IEEE Press, 1994 : 63-66.
  • 4Rudolph G. Convergence of Evolutionary Algorithms in General Search Space[C]//Proeeedings of 3rd IEEE Conference on Evo- lutionary Computation. Piscataway: IEEE Press, 1996 : 50-54.
  • 5Jaegerskuepper J. Algorithmic Analysis of a Basic Evolutionary Algorithm for Continuous Optimization[J]. Theoretical Com- puter Science, 2007,379 : 329-347.
  • 6谢承旺,丁立新.多目标进化算法中选择策略的研究[J].计算机科学,2009,36(9):167-172. 被引量:5
  • 7阎岭,蒋静坪.进化学习策略收敛性和逃逸能力的研究[J].自动化学报,2005,31(6):873-880. 被引量:16
  • 8He Jun, Yao Xin. Towards an Analytic Framework for Analy-sing the Computation Time of Evolutionary Algorithms[J]. Ar- tificial Intelligence, 2003,145 : 59-97.
  • 9Rudolph G. Finite Markov Chain Results in Evolutionary Com- putation.. A Tour d' Horizon [J]. Fundamenta Informaticae, 1998,35(1-4) :67-89.
  • 10Oliveto P S,He Jun,Yao Xin. Time Complexity of Evolutionary Algorithms for Combinatorial Optimization.. A Decade of Results [J]. International Journal of Automation and Computing, 2007, 4(3):281-293.

二级参考文献174

  • 1崔逊学,林闯.一种基于偏好的多目标调和遗传算法(英文)[J].软件学报,2005,16(5):761-770. 被引量:23
  • 2社区获得性肺炎诊断和治疗指南[J].中华结核和呼吸杂志,2006,29(10):651-655. 被引量:3057
  • 3Yao X. A new simulated annealing algorithm, Int. J. Computer Math, 1995, 56: 161-168.
  • 4Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research,1986, 5: 533-549.
  • 5Fogel D B, System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Needham Heights, MA 02194: Ginn Press, 1991.
  • 6Yao X, Liu Y. Evolving neural network ensembles by minimizagion of mutual information. International Journal of Hybrid Intelligent Systems, 2004, 1(1): 12 21.
  • 7Chandra A, Yao X. Evoiutionary framework for the construction of diverse hybrid ensembles, In Proc. the 13th European Symposium on Artificial Neural Networks (ESANN'2005),Bruges, Belgium, April 27-29, 2005, pp,253-258.
  • 8Chandra A, Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Lecture Notes in Computer Science,2004, 3177:619-625.
  • 9Chandra A, Yao X. Ensemble learning using multiobjective evolutionary algorithms, Journal of Mathematical Modelling and Algorithms, May 2005 (to appear).
  • 10Abbass H A. A memetic Pareto evolutionary approach to artificial neural networks. In Proc. the 14th Australian Joint Conference on Artificial Intelligence, Berlin, 2000, pp.1-12.

共引文献90

同被引文献46

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部