期刊文献+

非ISA关系在本体概念相似度计算中的度量方法研究 被引量:2

Approach of NON-ISA Concept Relation in Ontology Concept Similarity Computation
下载PDF
导出
摘要 在本体概念相似度计算过程中,关于本体概念间非ISA关系的处理方法较少。针对本体中存在非ISA概念关系的情况,总结了一些传统的概念相似度计算方法,提出了一种新的适应于非ISA概念关系的相似度计算方法。此方法利用Tversky模型计算本体有向无环概念图的信息量覆盖程度,并结合语义距离方法,再进行权值求和。实验表明,提出的方法可以有效地度量ISA关系,对非ISA关系具有适用性。 In the process of ontology concept similarity computation,there is few about the approaches of dealing with non-isa concept relation.Considering the existence of non-isa concept relation in ontology,summarize some traditional approaches of concept similarity computation,proposed a novel approach which adapts the non-isa relation.Compute the overlay-grade of ontology directed acycline concept graph information content based on tversky model,and combined the semantic distance approach,then sumed the weighted value.Experimental results show that our approach is effectively for isa concept relation and applicable for non-isa concept relation.
出处 《计算机科学》 CSCD 北大核心 2011年第7期250-254,共5页 Computer Science
基金 国家重点实验室创新基金课题(9140C8301011001)资助
关键词 非ISA概念关系 本体概念相似度 信息量 概念图 NON-ISA concept relation Ontology concept similarity Information content Concept graph
  • 相关文献

参考文献39

  • 1Zhong J W, Zhu H P, Li J M, et al. Conceptual graph matching for semantic search[C]//Proceedings of the lOth International Conference on Conceptual Structure. Berlin: Springer-Verlag, 2002 : 92-106.
  • 2Giunchiglia F, Yatskevich M. Element level semantic matching [C] // Proceedings of Meaning Coordination and Negotiation workshop at ISWC. 2004.
  • 3Pedersen T, Banerjee S. Maximizing semantic relatedness to per- form word sense disambiguation[R]. UMSI 2005/25. 2005.
  • 4Patwardhan S, Banerjee S, Pedersen T. Using Measures of Se-mantic Relatedness for Word Sense Disambiguation[C] // Pro eeedings of 4th International Conference on Computational Lin guistics and Intelligent Text Processing. 2003:241-257.
  • 5Liu M,Shen W M,Hao Q,et al. An weighted ontology based se mantle similarity algorithm for Web service[J]. Expert Systems with Applications, 2009,36 (10) : 12480-12490.
  • 6Tversky A. Features of similarity [J]. Psychological Review, 1977,84 : 327-352.
  • 7Rada R, Mill H, Bicknell E, et al. Development and application of a metric on semantic nets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989,19 (1) : 17-30.
  • 8Wu Z t3, Palmer M. Verb semantics and lexical selection[C] // Proceedings of 32nd Annual Meeting of the Association for Computational Linguistics Las Cruces, New Mexico, 1994 : 133-138.
  • 9Hirst G, David S-O. Lexical chains as representation of context for the detection and correction malapr0pisms[M]. The MIT Press, 1998.
  • 10Li Y,Bandar A,Mclean D. An approach for measuring semantic similarity between words using multiple information sources[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4) :871-882.

二级参考文献26

  • 1Jean-Mary YR, Kabuka MR. ASMOV Results for OAEI 2007 [C]//International Semantic Web Conference (ISWC). Busan, Korean, 2007 : 141-151
  • 2Introduction of Falcon-AO[EB/OL]. http://xobjects. seu. edu. en/project/falcon/matching/index. html. 2006
  • 3Li Y,Zhong Q, Li J, et al. Result of Ontology Alignment with Rimom at OAEI 2007[C]//OAEI. 2007:227-235
  • 4MelnikS, Garcia-MolinaH, RahmE. SimilarityFlooding : A Versatile Graph Matching Algorithm[C]//The 18th International Conference on Data Engineering. San Jose, California, USA, February 26th-Mareh 1st,2002:112-126
  • 5Hu W, Jian NS, Qum YZ, et al. GMO: A Graph Matching for Ontologies[C]//K-CAP Workshop on Integrating Ontologies. Banff, Alberta, Canada, October 2005 : 1-8
  • 6Jiang J J, Conrath D W. Semantic Similarity Based on Corpus Statitics and Lexical Taxonomy[C]//Proceedings of International Conference Reaserch on Computational Linguistic. TaiWan, 1997 : 1-15
  • 7Ortega JM, Rheinboldt WC. Iterative Solution of Nonliner Equations in Several Variables[M]. New York: Academic Press, 1970
  • 8Zhang ZW, Xu DZ, Zhang T. Ontology Mapping Based on Conditional Information Quantity[C]// Proceedings of ICNSC 2008. Sanya, 2008 : 587-591
  • 9.[EB/OL].http://www.schemaweb.info/,.
  • 10Brin S,Page L.The anatomy of a large-scale hypertextual Web search engine.Computer Networks,1998,30(1-7):107-117

共引文献9

同被引文献21

  • 1曹泽文,钱杰,张维明,邓苏.一种综合的概念相似度计算方法[J].计算机科学,2007,34(3):174-175. 被引量:35
  • 2李海生.知识管理技术与应用[M]{H}北京:北京邮电大学出版社,2012.
  • 3Wu Z,Palmer M. Verb semantics and lexical selection[A].1994.133-138.
  • 4Leacock C,Chodorow M. Combining Local Context andWordNet Simi-larity for Word Sense Identification[J].WordNet:An Electronic Lexi-cal Database,1998.265-283.
  • 5David Sánchez,Montserrat Batet,David Isern. Ontology-based semantic similarity A new feature-based approach[J].Journal of Bio-medical Informatics,2012,(44):118-125.
  • 6Resnik P. Using information content to evaluate semantic similarity in a taxonomy[A].1995.448-453.
  • 7Lin D. An information-theoretic definition of similarity[A].ICML,1998.296-304.
  • 8Jiang J J,Conrath D W. Semantic similarity based on corpus statistics and lexical taxonomy[A].1997.19-33.
  • 9Seco N,Veale T,Hayes J. An intrinsic information content metric for semantic similarity in WordNet[A].2004.1089-1090.
  • 10Gómez-Pérez A,Fernández-López M,Corcho O. Ontological Engineer-ing[M].{H}Springer-Verlag,2004.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部