期刊文献+

SWO:基于小世界效应的快速搜索算法 被引量:4

SWO:A Fast Search Algorithm Based on Small World Effect
下载PDF
导出
摘要 借鉴小世界网络理论中层次树模型和多分类标准建模的理论,设计了一种基于小世界效应的快速搜索算法SWO。采用掩码规则将解空间构造为层次树网络模型,并提出采用相映射的空间与原解空间共同组成双分层标准的建模理论。SWO算法通过对两种空间网络中长短邻居关系的查询访问,将实验信封推送到目的地,从而找到解空间中的最优值。实验证明,引入映射空间搜索机制可避免算法陷入局部最优,而长邻居关系的访问又加快了算法的收敛速度。通过与遗传算法(GA)、粒子群优化算法(PSO)和差分算法(DE)的对比,SWO算法表现出较强的搜索能力和较高的搜索效率。 This paper designed a fast search algorithm called Small World Optimization(SWO) which was inspired by the hierarchical categorization tree model and multi categories method based on small world theory.The solution space can be divided into the hierarchical categorization tree model using mask rule in binary coding.Two bijective mapping solution space were adopted to establish multi categories method.SWO can find the optimal solution in the designed small world network by short and long distance neighbor relationship as pushing the mail to target.SWO was tested via a benchmark test functions in a simulation and the corresponding results show that two bijective mapping space can avoid the algorithm falling into early maturity and the long distance neighbor relationship can accelerate the convergence rate.Compared with the most popular optimization algorithm as genetic algorithm(GA),Particle Swarm Optimization(PSO) and Difference Algorithm(DE),the SWO algorithm is endowed with faster convergence ability to solve complex optimization problems.
出处 《计算机科学》 CSCD 北大核心 2011年第7期255-260,共6页 Computer Science
基金 国家自然科学基金资助项目(50775089 50825503)资助
关键词 小世界优化算法 层次树网络模型 多分类标准建模 分布式搜索 Small world optimization Hierarchical categorization tree model Multi categories standard model Distributed searching
  • 相关文献

参考文献22

  • 1Braun T. Hungarian priority in network theory [J]. Science, 2004,304(5678) :1745.
  • 2Milgram T S. An experimental study of the small-world problem [J]. Sociometry, 1969, a2.
  • 3Watts D J, Strogatz S H. Collective dynamics of small-world ' networks[J]. Nature, 1998,393 : 440.
  • 4Strogatz S H. Exploring complex networks[J]. Nature, 2001,410(6825),268.
  • 5Kleinberg J. The Small-world Phenomenon: An Algorithmic Perspective[C] //Proceedings of the Thirty-second Annual ACM. Ithaca, Cornell Computer Science Technical Report. 1999,10:99-1776.
  • 6Kleinberg J. Navigation in a small world[J]. Nature, 2000,406 (6798):845.
  • 7Walsh T. Search in a small world[C] // 16th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: Mor- gan Kaufmann Pub Ine, 1999.
  • 8Chen J Z, Liu W, Zhu J Y. Two-dimensional small-world net- works: Navigation with local information[J]. Physical Review E,2006,73(5) :6.
  • 9穆华平,曾建潮.基于小世界模型动态演化邻域的微粒群算法[J].系统仿真学报,2008,20(15):3940-3943. 被引量:6
  • 10杜海峰,庄健,张进华,王孙安.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. 被引量:25

二级参考文献51

  • 1杜海峰,庄健,张进华,王孙安.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. 被引量:25
  • 2覃森,戴冠中,王林.节点数固定的复杂网络模型初探[J].复杂系统与复杂性科学,2005,2(2):7-12. 被引量:8
  • 3刘强,方锦清,李永,梁勇.探索小世界特性产生的一种新方法[J].复杂系统与复杂性科学,2005,2(2):13-19. 被引量:11
  • 4Andrew C, Carlos F, Hartmut P, et al. Genetic algorithm toolbox [EB/OL]. http://www.shef.ac.uk/cgi-bin/cgiwrap/gaipp/gatbx-download, 2003-10-05.
  • 5Kleinberg J. The small-world phenomenon and decentralized search [J]. SIAM News, 2004, 37(3):1-2.
  • 6Watts D J, Strogatz S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393(4):440-442.
  • 7Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Rev Mod Phys, 2002, 74(1):47-97.
  • 8Liljeros F, Falling C R, Amaral L A N, et al. The web of human sexual contacts [J]. Nature, 2001, 411(6 840) : 907-908.
  • 9Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks [J]. Nature, 2001,407(6 804):651-654.
  • 10Kleinberg J. The small-world phenomenon: an algorithmic perspective [EB/OL]. http://www.cs.cornell.edu/home/kleinber/swn.d/swn.html,2004-11-20.

共引文献31

同被引文献35

  • 1杜海峰,庄健,张进华,王孙安.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. 被引量:25
  • 2陈煜聪,杨斌,杜海峰,邵頡,庄健.一种具有跟踪替代特征的小世界算法[J].西安交通大学学报,2007,41(11):1360-1363. 被引量:7
  • 3Tanaka S,et al.Pilot symbol-assisted decision-directed coherent adaptive array diversity for DS-CDMA mobile radio reverse link.IEICE Trans.On Fundamentals[J],1997,E-AOA(12):2445-2453.
  • 4EngelbrechtAP.2009.计算群体智能基础.北京:清华大学版社:65-120.
  • 5Milgram S.The small-world problem[J].Psychology Today,1967(1):60-67.
  • 6Watts D J,Strogatz S H.Collective dynamics of 'smallworld'networks[J].Nature,1998,393(6684):440-442.
  • 7Kleinberg J M.Navigation in a small world[J].Nature,2000,406(6798):845-847.
  • 8刘海瑞.小世界优化算法的研究及其在复杂热工控制中的应用[D].北京:北京交通大学,2012:9-16.
  • 9Kleinberg J.The small-world phenomenon:an algorithmicperspective[C].Computer Science Technical Reports,1999.
  • 10杜海峰.小世界优化算法测试函数及实验结果[EB/OL].[2007-02-15].http://202.117.58.58/website/testData.htm.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部