期刊文献+

改进滑动平均滤波在PSO辨识中的应用 被引量:5

Application of Improved Moving Average Filter to Identification of PSO
下载PDF
导出
摘要 在实际系统信号中不可避免的会存在噪声和瞬时扰动,噪声过大会严重影响粒子群优化算法(PSO)的辨识结果。针对强噪声环境下利用PSO算法进行参数辨识精度差甚至不能收敛的问题,提出了一种改进的滑动平均滤波算法,通过动态修正滑动平均后的数据相位,来实现无滞后的滑动平均滤波效果。仿真实验表明,对这种改进滑动平均滤波算法应用于PSO辨识数据预处理后,有效地提高了PSO对强噪声系统辨识的精度。 The problem of additive noise and instantaneous disturbance producing the advers influences to system identification is discussed.Strong noise will seriously affect the identification results and the particle swarm optimization(PSO)algorithm may not converge due to the interference of noise in the process of identification.An improved moving average filter algorithm is proposed.The moving average filtering result without lag is obtained by using the data phase by dynamic phase correction,PSO method can identify the system model more effectively.The experimental results show that the proposed approach effectively enhance the accuracy of the identification result.
出处 《控制工程》 CSCD 北大核心 2011年第4期556-558,609,共4页 Control Engineering of China
基金 863项目:多变量内模控制的工程化应用 研究及实现(2008AA042131) 973项目:工业生物技术的过程科学科技术研究(2007CB714300)
关键词 强噪声 滑动平均滤波 粒子群优化 参数辨识 strong noise parameter identification PSO moving average filter
  • 相关文献

参考文献11

  • 1胡峰,吴波,胡友民,史铁林.利用粒子群优化算法实现阻尼比和频率的精确识别[J].振动与冲击,2009,28(7):8-11. 被引量:18
  • 2Mahmoodi S. Anisotropic diffusion for noise removal of band pass signals[J]. Signal Processing,2011,91(5) :1298-1307.
  • 3于盛林,刘文波.用于减小随机误差的中值-模糊滤波器[J].计量学报,1995,16(4):297-300. 被引量:11
  • 4Tipireddy R, Nasrellah H A, Manohar C S. A Kalman filter based strategy for linear structural system identification based on multiple static and dynamic test data[ J], ProbaNlistic Engineering Mechan- ics. 2009,24( 1 ) :60-74.
  • 5Kim J. Identification of lateral tyre force dynamics using an extend- ed Kalman filter from experimental road test data [ J ], Control Engi- neering Practice. 2009,17 ( 3 ) :357-367.
  • 6刘清,岳东.混合滤波去噪与微粒群算法优化的辨识方法[J].上海交通大学学报,2008,42(4):594-598. 被引量:2
  • 7余世明,冯浩,王守觉.基于小波和最小绝对误差的去噪抗扰动辨识方法[J].电子学报,2003,31(2):192-195. 被引量:11
  • 8Kennedy J, Eberhart R. Particle swarm optimization[ C ], Perth : Australia in Proceedings of IEEE International Conference on Neu- ral Networks 1995.
  • 9Taher S A, Karimian A, Hasani M. A new method for optimal loca- tion and sizing of capacitors in distorted distribution networks using PSO algorithm [ J ]. Simulation Modelling Practice and Theory, 2011,19(2) : 662-672.
  • 10Luitel B, Venayagamoorthy G K. Quantum inspired PSO for the op- timization of simultaneous recurrent neural networks as MIMO learning systems[ J]. Neural Networks ,2010,23 ( 5 ) : 583-586.

二级参考文献25

  • 1丁康,何志达,孔正国.基于离散频谱分析的自由衰减振动信号的幅值恢复[J].振动工程学报,2005,18(2):172-178. 被引量:5
  • 2于盛林,刘文波.用于减小随机误差的中值-模糊滤波器[J].计量学报,1995,16(4):297-300. 被引量:11
  • 3倪博溢,萧德云.MATLAB环境下的系统辨识仿真工具箱[J].系统仿真学报,2006,18(6):1493-1496. 被引量:45
  • 4Salim Ahmed, Biao Huang, Sirish L Shah. Identification from step responses with transient initial conditions [J]. Journal of Process Control (S0959-1524), 2008, 18(2): 121-130.
  • 5J Ramarathnam, A K Tangirala. On the use of Poisson wavelet transform for system identification [J]. Journal of Process Control (S0959-1524), 1995, 5(4): 225-234.
  • 6Hua Mei, Shaoyuan Li. Decentralized identification for multivariable integrating processes with time delays from closed-loop step tests [J]. ISA Transactions (S0019-0578), 2007, 46(2): 189-198.
  • 7Salim Ahmed, Biao Huang, Sirish L Shah. Novel identification method from step response [J]. Control Engineering Practice (S0967-0661), 2007, 15(5): 545-566.
  • 8Zheng J, Dvid B H, Lin Z P. Modeling general distributed nonstationary process and idetifying time-Varying autoregressive system by wavelets:theory and application [ J ]. Signal Processing, 2001,81 ( 9 ) : 1823 -1848.
  • 9Ghanem R, Romeo F. A wavelet-based approach for the identification of linear time-varying dynamical systems[J] .Journal of Sound and Vibration,2000,234(4) :555 - 567.
  • 10Ghanem R, Romeo F. A wavelet-based approach for model and parameter identification of non-linear system[J]. International Journal of Non-Linear Mechanics, 2001,36 (5) : 835 - 859.

共引文献41

同被引文献61

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部