期刊文献+

一类具有收治率的艾滋病传播的随机模型及其风险分析

A Stochastic Model for Risk Analysis of AIDS Transmission with Treatment Rate
下载PDF
导出
摘要 建立一类考虑收治率因素的艾滋病传播的随机微分方程模型,分析了其渐近稳定性,得到收治率的一个临界值表达式,通过仿真,验证该临界值对艾滋病消亡的作用,并比较不同的疾病传播率对艾滋病传播过程的影响.相应地,针对不同的疾病传播率,给定同一个控制目标,分别计算了在4种不同的收治强度下,艾滋病病毒感染者人数占总人口比例超过该控制目标的风险概率,从而为艾滋病的预防与控制提供一定的决策支持. A stochastic model is presented for acquired immunodeficiency syndrome(AIDS) transmission with treatment rate and its asymptotic behavior is analyzed.A critical value for the treatment rate is illustrated for the proportion to tend to the disease equilibrium by simulation.Comparison is also given between the effects of different values for the disease transmission rate on AIDS transmission.Given a control aim,the risk probability is computed for the proportion of the population infected with HIV(human immunodeficiency virus) against total population exceeding the aim under four cases when different values are given to the disease transmission rate.By this means,some strategies are developed for AIDS prevention and control.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期382-386,共5页 Journal of Donghua University(Natural Science)
基金 教育部人文社科基金资助项目(08JA630051) 上海市教委085资助项目(Z08509008-01) 上海高校选拔优秀青年教师科研专项基金资助项目(B-5300-08-007)
关键词 艾滋病(AIDS) 随机模型 收治率 疾病平衡点 风险概率 acquired immunodeficiency syndrome(AIDS) stochastic model treatment rate disease equilibrium risk probability
  • 相关文献

参考文献16

  • 1CASTILIXkCHAVEZ C, COOKE K, HUANG W, et al. The role of long incubation periodic in the dynamics of acquired immunodeficiency syndrome: Single population models [J]. Biomedical and Life Sciences and Mathematics and Statistics, 1989, 27(4): 373-398.
  • 2HAYNATZKA V R, GANI J, RACHEVN S T. The spread of AIDS among interactive transmission[J]. Biosystems, 2004, 73(3) : 157-161.
  • 3B1.YTHE S P, ANDERSON R M. Distributed incubation and infections periods in models of transmission dynamics of human immunodeficiencyvirus (HIV)[J]. IMA J Math Appl Med Biol, 1988, 5(1): 1-19.
  • 4BLYTHE S P, ANDERSON R M. Variable infectiousness in HIV transmission models[J]. IMA J Math Appl Med Biol, 1988, 5(3): 181-200.
  • 5BI.YTHE S P, ANDERSON R M. Heterogeneous sexual activity models of HIV transmission in male homosexual populations[J]. IMA J Math Appl Med Biol, 1988, 5(4): 237-260.
  • 6GREENHALGH D, DOYLE M, LEWIS F. A mathematicaltreatment of AIDS and condom use[J]. IMA J Math Appl Med Biol, 2001, 18(3): 225-262.
  • 7NIRAV D, GREENHALGH I), MAO X R. A smchaslic model for internal HIV dynamics[J]. Journal of Malhemalieal Analysis and Applications, 2008, 341(2): 1084-1101.
  • 8NIRAV I), (;REENHALGH D, MA() X R. A stochaslie model of AIDS and condom use [J]. Journal of Mathematical Analysis and Applications, 2007, 32f; ( 1 ) : 36-53.
  • 9ROBERTS M G, SAHA A K. The asymptotic beheavior of a logistic epidemic model with stochastic disease lransmission[J]. Applied Mathematics Letters, 1999, 12(1): 37-41.
  • 10徐敏,丁永生,胡良剑.基于随机模型的艾滋病预防与控制策略研究[J].计算机仿真,2008,25(12):308-311. 被引量:3

二级参考文献14

  • 1方鹏骞,吴晓艳.城乡社区居民艾滋病 知识 态度 行为需求评价[J].中国艾滋病性病,2004,10(6):445-447. 被引量:41
  • 2S P Blythe, R M Anderson. Distributed incubation and infections periods in models of transmission dynamics of human immunodefi-ciency virus(HIV)[J]. IMAJ. Math. Appl. Med. Biol. 1988, 5:1 - 19.
  • 3S P Blythe, R M Anderson. Variable infectiousness in HIV transmission models[J]. IMA J. Math. Appl. Med. Biol. 1988, 5: 181 - 200.
  • 4S P Blythe, R M Anderson, Heterogenous sexual activity models of HIV transmission in male homosexual populations [ J ]. IMA J. Math. Appl. Med. Biol. 1988,5:237 - 260.
  • 5J A Jacquez, C P Simon, J S Koopman. Structured mixing: Heterogenous mixing by the definition of activity groups, in: C. Castillo - Chavez ( Ed. ), Mathematical and Statisical Approaches to AIDS Epidemiology[ J]. in: Lecture Notes in Biomath. , Springer, Berlin, 1989, 83:301 - 315.
  • 6M G Roberts, A K Saha. The asymptotic behavior of a logistic epidemic model with stochastic disease transmission [ J ]. Applied Mathematics Letters, 1999, 12 : 37 -41.
  • 7P E Kloeden, E Platen. Numerical solution of stochastic differential equations[ M ]. Spring - Verlag, 1992.
  • 8M A Kouritzin, L Deli. On explicit solution to stochastic differential equations[J]. Stochastic Analysis and Applications, 2000, 18 (4) : 571 -580.
  • 9Allen L J S, Thrasher D B. The effects of vaccination in an age-dependent model for varicella and herpes zoster[J]. IEEE Transactions on Automatic Control, 1998, 43: 779-789.
  • 10Youngjoon Cha, Mimmo Iannelli, Fabio A. Milner existence and uniqueness of endemic states for the age-structured S-I-R epidemic model[J]. Mathematical Biosciences, 1998, 150: 177-190.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部