期刊文献+

基于四阶偏微分方程的乘性噪声去除模型 被引量:1

A Model Based on the Fourth-order PDE for Multiplicative Noise Removal
下载PDF
导出
摘要 基于二阶偏微分方程(PDE)在复原图像时会产生阶梯现象,而高阶PDE能够很好地克服这一缺陷,提出了一个针对乘性噪声去除的四阶PDE模型.为了求解该模型,建立了一个交替最小值算法,并通过数值试验验证了该算法的有效性. Because the second-order partial differential equations (PDE) have the staircase effect and the fourth-order PDEs can alleviate this effect, a model based on the fourth-order PDEs was proposed for multiplicative noise removal. An alternating minimization algorithm was established to find the solution of the model. Some experimental examples were given to prove the effectiveness of the proposed model.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第7期83-86,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(11071060 60835004) 湖南省应用基础研究计划重点资助项目(2008FJ2008) 973计划资助项目(2009CB326202) 湖南省高校科技创新团队支持计划资助项目(湘教通[2008]244号)
关键词 乘性噪声 四阶PDE 交替最小值算法 multiplicative noise fourth-order PDE alternating minimization algorithm
  • 相关文献

参考文献8

  • 1HENDERSON F M, LEWIS A J. Manual of remote sensing: volume 2 Principles and applications of imaging radar[M]. 3th ed. New York: Wiley, 1998.
  • 2MUNSON D C J, VISENTIN R L. A signal processing view of trip-mapping synthetic aperture radar[J]. IEEE Transac- tions on Acoustics, Speech, and Signal Processing, 1989, 37 (12) : 2131--2147.
  • 3KRYVANOS A, HESSER J, STEIDL G. Nonlinear image restoration methods for marker extraction in 3d fluorescent mi- croscopy[C]//Proceedings of the SPIEls 17th Annual Sympo- sium EI05--Electronic Imaging. Berlin: Springer, 2005.
  • 4RUDIN L, LIONS P, OSHER S. Multiplicative denoising and deblurring: theory and algorithms [M] // OSHER I S,PARAGIOS N, editors. Geometric Level Sets in Imaging, Vision, and Graphics. Berlin.. Springer, 2003: 103--119.
  • 5AUBERT G, AUJOI. J. A variational approach to remove multiplicative noise[J]. SIAM Journal on Applied Mathemat- ics, 2008, 68(4): 925-946.
  • 6HUANG Y, NG M, WEN Y. A new total variation method for multiplicative noise removal[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 20--40.
  • 7CHEN Hua-zhu, SONG Jin-ping, TAI Xue-cheng. A dual al- gorithm for minimization of the LLT model[J]. Advances in Computational Mathematics, 2009, 31(1/3) : 115- 130.
  • 8BREDIES K, KUNISCH K, ation[J]. SIAM Journal on 492--526. POCK T. Total generalized vari Imaging Sciences, 2010, 3(3).

同被引文献9

  • 1张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 2Zhu W,Chan T. Image Denoising Using Mean Curvature of Image Surface[J]. SIAM Journal on Imaging Sciences, 2012,5(1) : 1 - 32.
  • 3Chambolle A, Pock T. A First-order Primal-dual Algorithm for Convex Problems with Applications to Imaging [J ]. Journal of Mathematical Imaging and Vision, 2011,40(1) : 120 - 145.
  • 4Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removed Algorithm [J ]. Physiea D: Nonlinear Phenomena, 1992,60(1/2/3/4) : 259 - 268.
  • 5Zheng Shixiu, Pan Zhenkuan, Wang Guodong. A Variational Model of Image Restoration Based on First and Second Order Derivatives and its Split Bregman Algorithm[C]//Audio, Language and Image Processing (ICALIP), 2012 International Conference. Shanghai, 2012:860- 865.
  • 6You Y L, Keveh M. Fourth-order Partial Differential Equation for Noise Remove [J]. IEEE Transactions onImage Processing, 2000,9(10) : 1723 - 1730.
  • 7Lysaker M,Lundervold A,Tai X C. Noise Removal Using Fourth-order Partial Differential Equation with Applications to Medical Magnetic Resonance Images in Space and Time [ J ]. IEEE Transactions on Image Processing, 2003,12(12) : 1579 - 1590.
  • 8杜宏伟.基于偏微分方程的图像去噪综合模型[J].计算机工程与应用,2008,44(20):198-201. 被引量:13
  • 9陈明举,杨平先,王晶.基于正则化与保真项全变分自适应图像去噪模型[J].重庆邮电大学学报(自然科学版),2011,23(5):621-625. 被引量:11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部