期刊文献+

带启动期的单重工作休假GI/Geom/1排队

The discrete-time GI/Geom/1 queue with single working vacation and setup times
下载PDF
导出
摘要 详细分析了带启动期的单重工作休假GI/Geom/1排队.首先在顾客到达时刻嵌入二维Markov链,把状态转移概率矩阵表示成Block-Jocabi形式.然后用矩阵几何解方法导出了稳态队长的分布及其随机分解结构,得到等待时间的母函数及其随机分解结构,同时给出了平均队长和平均等待时间.最后,用Matlab软件验证了一个数值例子. The GI/Geom/1 queue with single working vacation and setup times is considerd in this paper.With the two-dimensional Markov chain embedded in the time that the customers arrive the system,its transition probability matrix is expressed in Block-Jocabi form.And with the matrix-geometric solution method,probability distribution of the stationary queue length and the highly complicated PGF of the stationary waiting time are firstly derived.Meanwhile,the mean queue length and the mean waiting time are given.Finally,the numerical results with Matlab are presented.
作者 徐秀丽 王威
机构地区 燕山大学理学院
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2011年第4期15-20,24,共7页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10671170)
关键词 启动时间 单重工作休假 GI/Geom/1排队 矩阵几何解 setup time single working vacation GI/Geom/1 queue matrix-geometric sloution
  • 相关文献

参考文献13

  • 1MEISLING T. Discrete time queueing theory[J]. OperRes, 1958, 6: 96-105.
  • 2HUNTER J J. Mathematical Techniques of Applied Probability, Discrete Time Models [M]. Techniques and Applications, vol 2. New York: Academic Press, 1983.
  • 3TAKAGI H. Queueing Analysis[M]. Discrete-Time Systems, vol 3. Amsterdam.. Elsevier, 1993.
  • 4DOSHI B T. Queueing systems with vacations: a survey[J]. Queueing Systems, 1986, 1(1) : 29-66.
  • 5TIAN Nai-shuo, ZHANG Z G. Vacation Queueing Models : Theory and Applications[ M]. New York: Springer, 2006.
  • 6SERVI L D, FINN S G. M/M/1 queue with working vacations ( M/M/1/WV ) [ J ]. Perform Evaluation, 2002, 50: 41-52.
  • 7KIMJ D, CHOI D W, CHAE K C. Analysis of queue-length distribution of the M/G/1 queue with working vacations [ C ]//Hawaii International Conference on Statistics and Related Fields, 2003: 5-8.
  • 8WU D, TAKAGI H. M/G/1 queue with multiple working vacations[C]//Proeeedings of the Queueing Symposium. Stochastic Models and Applications, kakegawa, 2003: 51-60.
  • 9BABA Y. Analysis of a GI/M/1 queue with multiple working vacations[J]. Oper Res Letters, 2005, 33.. 201-209.
  • 10LI Ji-hong, TIAN Nai-shuo, LIU Wen-yuan. Discrete-time GI/Geo/1 queue with working vacations [J]. Queueing Systems, 2007, 56: 53-63.

二级参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部