期刊文献+

一种基于多特征签名的图像检索系统 被引量:6

A MULTI FEATURE SIGNATURE BASED IMAGE RETRIEVAL SYSTEM
下载PDF
导出
摘要 针对以浮点矢量形式保存的图像特征存储开销大、距离计算复杂的缺点,提出了一种基于多特征签名的图像检索系统。该系统利用主分量分析和矢量量化技术,对多类浮点矢量特征降维后映射到多个特征签名中,并通过汉明距离表示特征签名之间的距离。实验结果表明,该系统相对于基于浮点矢量的图像检索系统能很好地实现图像的特征存储和签名匹配,在准确率保持不变的情况下能返回更多的检索结果,且具有较好的特征可扩展性。 Aiming at the huge storage cost and the complexity of distance computation for image features stored in float vector format,a multi feature signature based image retrieval system has been put forward.By using Principal Component Analysis(PCA) and Vector Quantization(VQ),the system reduces the dimension of multiple float feature vectors that are reflected onto multiple feature signatures.Then Hamming Distance is introduced to represent the distance between feature signatures.Experiments demonstrate that,compared to float vector based image retrieval systems,the novel proposed system can handle feature storage and signature matching issues,returning more query results without downgrading the correctness ratio.Moreover,the system has excellent feature extensibility.
出处 《计算机应用与软件》 CSCD 2011年第7期82-85,共4页 Computer Applications and Software
基金 上海市科委科研计划项目(08511500902 08511501903)
关键词 特征签名 主分量分析 矢量量化 基于内容的图像检索 Feature signature Principal component analysis(PCA) Vector quantization(VQ) Content based image retrieval(CBIR)
  • 相关文献

参考文献8

  • 1Datta R ,Joshi D, Li Jia, et al. Image Retrieval : Ideas, Influences, and Trends of the New Age[ J]. ACM Computing Surveys,2008 ,g0(2) :35 -94.
  • 2Rao A,Srihari R K,Zhang Zhongfei. Spatial Color Histograms for Content-Based Image Retrieval [ C ]//Proc. of International Conference on Tools with Artificial Intelligence. Chicago, Illinois, USA : IEEE Press, 1999 : 183 - 186.
  • 3Zhang Dengsheng, Wong A, Indrawan M, et al. Content-based Image Retrieval Using Gabor Texture Features [ J]. IEEE Trans. on Pattern A- nalysis and Machine Intelligence,2000,12 (7) :629- 639.
  • 4Gersho A, Gray R,M. Vector quantization and signal compression[ M ]. Norwell, Massachusetts, USA: KIuwcr Academic Publishers, 1992.
  • 5MacKay D. Information Theory, Inference, and Learning Algorithms [ M ]. Cambridge, UK: Cambridge University Press,2003.
  • 6Wang Bin, Li Zhiwei, Li Mingjing, et al. Large-scale duplicate detection for web image search [ C ]//Proc. of IEEE International Conference onMultimedia & Expo. Toronto, Ontario, Canada : IEEE Press,2006:353 - 356.
  • 7Sikora T. The MPEG-7 Visual standard for content description-an overview[ J]. IEEE Trans. Circuits and Systems for Video Technology, 2001,11 (6) :696 -702.
  • 8Frey B J, Dueck D. Clustering by Passing Messages Between Data Points [ J]. Science ,2007,315 (5814 ) :972 - 976.

同被引文献47

  • 1董卫军,周明全,耿国华.基于综合特征图像检索技术研究[J].计算机应用与软件,2005,22(11):34-35. 被引量:19
  • 2朱桂英,张瑞林.信息熵在图像处理中的应用[J].丝绸,2006,43(12):34-36. 被引量:7
  • 3Pass G,Zabih R. Histogram refinement for content-based image retrieval[C]//IEEE Workshop on Applications of Computer Vision, 1996 : 98 - 102.
  • 4S Jeong,C S Won, R M Gray. Image retrieval using color histograms generated by gauss mixture vector quantization[J].Computer Vision and Image Understanding,2004,9(1 - 3):44 - 66.
  • 5S Minkowsi, F Hausdorff. Image retrieval evaluation!]C]//IEEE Workshop on Content-Based Access of Image and VideoLibraries, Santa Barbara Caiifornia,1998:112 -113.
  • 6白雪生,廖春元,徐光佑,等.一个基于内容的图像检索系统[C]//第七届全国多媒体技术学术年会,1998.
  • 7沈学东.颜色特征在图像检索中的应用研究[J].计算机应用与软件,2007,24(11):156-158. 被引量:2
  • 8Jolliffe I T. Principal Component Analysis M2. New York= Springer-Verlag, 1986.
  • 9Partridge M, Calvo R A. Fast Dimensionality Reduction and Simple PCA J2. Intelligent Data Analysis, 1998, 2(1/2/3/4): 203- 214.
  • 10Kira K, Rendell I. A. A Practical Approach to Feature Selection [C//Proceedings Workshop on Machine I.earning. San Francisco: Morgan Kaufmann, 1992:249 -256.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部