摘要
设E={1,2,…,N},{(Kk,Yk),k≥1}是在E×E中取值的随机向量序列,其中{Yk,k≥1}是非齐次马氏链,对于任意的n≥2,(X1,…,Xn)在给定(Y1,…,Yn)的情况下条件独立,且Xi的条件分布仅依赖于Yi的值.设i∈E,Sn(i),Qn(i)分别表示序列Xi,…,Xn与Yn,…,Yn中的i的个数.本文用分析方法研究关于Sn(i)与Qn(i)的强极限定理.
Let E= {l, 2, '', N} and { (Xk, Yk ), k ≥ 1 ) be a sequence of random vectors taking values in Ex E, where { Yk, k ≥ 1 } is anonhomogeneous Markov Chain. For any n ≥ 2, X1, …, Xu are conditionally independent under the condition that (Y1,…, Yn ) is given and the conditional distribution of Xi dependent only on the value of Yi. For i∈ E, let Sn(i) and Qn(i) denote respectively the numbers of i in the sequences X1,…, Xn and Y1, …, Yn. In this paper, by using an analytic method, a strong limit theorem concerning Sn(i)and Qn(i) is studied.
出处
《河北工业大学学报》
CAS
1999年第5期14-21,共8页
Journal of Hebei University of Technology
基金
国家自然科学资金
关键词
条件独立
非齐次马氏链
强极限定理
随机变量
Conditionally independent, Finite nonhomopgeneous Markov Chain, Strong limit theorem.