摘要
本文在分析人工神经网络理论和图象处理及其特征提取理论的基础上,探讨了网络结构、特征编码、算法的实现、学习样本的收集、网络参数的选择及BP算法缺陷等问题,设计并实现了一种基于神经网络的字符识别系统。并针对BP算法的缺陷问题提出改进方法并得以实现,提出建立奇异样本特征库的方法使学习的效率大大的提高。实践证明采用改进型BP算法的三层前向无反馈神经网络进行手写字符识别是完全可行和实用的。
The theory of Artificial Neural Networks and image processing are analyzed. ANN theory is also investigated . A Back Propagation network is used for classification. Based on the ANN and feature extraction, a character recognition and entry system is developed. Its drawbacks are discussed. Some solutions are presented. An odd feature database is constructed to promote the performance for learning. A 3 layer feedforward network has been proved that it has the ability to identify hand written characters.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
1999年第6期59-65,共7页
Journal of Chongqing University
关键词
神经网络
图象处理
BP算法
字符识别
特征提取
ANN
image processing
Back Propagation network
hand written characters recognition