期刊文献+

具有连续监督控制功能的稳定自适应模糊控制方法 被引量:2

On Improving Performance of Controlled System with Continuous Fuzzy Monitoring
下载PDF
导出
摘要 基于李雅普诺夫稳定性理论与动态逆方法,将滑模控制与连续监督控制策略应用于自适应模糊控制系统中,能显著增强模糊自适应控制系统的稳定性,使系统在一定条件下达到全局渐近稳定。作者对该方法进行了理论分析,并提供了一个仿真算例。 The shortcoming of noncontinuous fuzzy monitoring control [1] is that the controlled system is already divergent when effectively corrected according to feedback. Our theoretical analysis is as usual based on Lyapunov stability theory and inverse dynamic method. Like L.X.Wang [1] , we apply sliding mode control to our problem. Different from Wang [1] , we apply continuous monitoring instead of noncontinuous monitoring to adaptive fuzzy control systems. After a lengthy derivation, we obtain eq.(14) as the core equation for designing our controller. Our entire theoretical analysis can guarantee that the controlled system be globally and asymptotically stable. Simulation results, shown in Figs.1,2 and 3, indicate that our analysis is promising. Our entire theoretical analysis can guarantee that the controlled system be globally and asymptotically stable. Simulation results, shown in Figs.1,2 and 3, indicate that our analysis is promising.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 1999年第3期371-375,共5页 Journal of Northwestern Polytechnical University
基金 船舶工业国防科技应用 基础研究基金
关键词 滑模控制 自适应控制 模糊控制 连续监督控制 adaptive fuzzy control, continuous monitoring, Lyapunov stability theory, inverse dynamic method, sliding mode control
  • 相关文献

参考文献2

  • 1Cao S G,IEEE Trans Syst Man Cybern,1996年,26卷,1期,201页
  • 2王立新,自适应模糊系统与控制.设计与稳定性分析,1995年

同被引文献17

  • 1修智宏,王伟.T-S模糊系统输出反馈控制器的稳定性分析与设计[J].控制理论与应用,2006,23(4):508-514. 被引量:7
  • 2WANG L X. Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 146 - 155.
  • 3WANG L X. Adaptive Fuzzy Systems and Control: Design and Sta- bility Analysis[M]. Englewood Cliffs, N J: Prentice Hall, 1994.
  • 4WANG L X. A supervisory controller for fuzzy control systems that guarantees stability[J]. IEEE Transactions on Automatic Control, 1994, 39(9): 1845 - 1847.
  • 5ZENG K, ZHANG N Y, XU W L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approxima- tors[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(6): 773 - 780.
  • 6CHANGHO H, CHANGWOO P, SEUNGWOO K. Takagi-Sugeno fuzzy model based indirect adaptive fuzzy observer and controller design[J]. Information Sciences, 2010, 180(11): 2314- 2327.
  • 7MENDEL J M. On answering the question "Where do I start in or- der to solve a new problem involving interval type-2 fuzzy sets?" [J]. Information Sciences, 2009, 179(19): 3418 - 3431.
  • 8LIANG Q I, MENDEL J M. Interval type-2 fuzzy logic systems: the- ory and design[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 535-550.
  • 9MENDEL J M, JROBERT, LIU F L. Interval type-2 fuzzy logic sys- tems made simple[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(6): 808 - 821.
  • 10MENDEL J M. Computing derivatives in interval type-2 fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1): 84 - 98.

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部