期刊文献+

一种改进的线性判别分析算法在人脸识别中的应用 被引量:6

An Improved LDA Algorithm and Its Application to Face Recognition
下载PDF
导出
摘要 线性判别分析算法是一种经典的特征提取方法,但其仅在大样本情况下适用。本文针对传统线性判别分析算法面临的小样本问题和秩限制问题,提出了一种改进的线性判别分析算法ILDA。该方法在矩阵指数的基础上,重新定义了类内离散度矩阵和类间离散度矩阵,有效地同时提取类内离散度矩阵零空间和非零空间中的信息。若干人脸数据库上的比较实验表明了ILDA在人脸识别方面的有效性。 Linear discriminant analysis(LDA) is a typical feature extraction method,but there exist at least two critical drawbacks in LDA: the small sample size problem and the rank limitation problem.In order to solve the above problems,this paper presents an improved LDA method(ILDA) which redefines the between-class scatter matrix and the within-class scatter matrix.ILDA can effectively extract the discriminative information included in the null subspace and the non-null subspace of a within-class scatter matrix.Numerical experiments on some facial databases show ILDA achieves good performance of face recognition.
作者 刘忠宝
出处 《计算机工程与科学》 CSCD 北大核心 2011年第7期89-93,共5页 Computer Engineering & Science
关键词 线性判别分析 类内离散度矩阵 类间离散度矩阵 人脸识别 linear discriminant analysis(LDA) within-class scatter matrix between-class scatter matrix face recognition
  • 相关文献

参考文献11

  • 1Jain A K, Duin R, Mao J. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1) :4-37.
  • 2Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfac es: Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 3Fisher R A. The Use of Multiple Measurements in TaxonomicProblems[J]. Annals of Eugenics, 1936,7(2):178- 188.
  • 4Swets D, Weng J. Using Discriminant Eigenfeatures for Im age Retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8) :831-836.
  • 5Hong Z Q, Yang J Y. Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane[J]. Pattern Recognition, 1991, 24(4) :317-324.
  • 6Chen I.-F, Mark Liao H Y, Ko M-T, et al. A New LDA Based Face Recognition System Which Can Solve the Small Sample Size Problem [J]. Pattern Recogniton, 2000, 33 (10) :317-324.
  • 7Yu Hua, Yang Jie. A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition[J]. Pattern Recognition, 2001, 34(11):2067-2070.
  • 8Bernstein D S,So W. Some Explicit Formulas for the Matrix Exponential[J]. IEEE Transcation on Autom Control, 1993,38(8) :1228-1232.
  • 9李刚,高政.人脸识别理论研究进展[J].计算机与现代化,2003(3):1-6. 被引量:20
  • 10http://www, cam orl. co. uk/facedatabase, html.

二级参考文献1

  • 1Wiskott L Fellous J M Krüer N et al.Face recognition by elastic bunch graph matching[J].IEEE Transations on Pattern Analysis and Machine Intelligence,1997,9(7):775-779.

共引文献19

同被引文献59

  • 1罗翌陈,杨辉华,李灵巧,翟雷.SIFT算法在CUDA加速下的实时人物识别与定位[J].计算机科学,2012,39(S3):391-394. 被引量:11
  • 2肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 3许廷发,韦岗,倪国强.基于并行结构的Gabor小波神经网络算法及应用[J].光学精密工程,2006,14(2):247-250. 被引量:8
  • 4Martinez A M and Kak A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 5Alibeigi M, Hashemi S, and Hamzeh A. DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets[J]. Data Knowledge Engineering, 2012, 81/82: 67-103.
  • 6Friedman H. Regularized discriminant analysis[J]. Journal of the American Statistical Association, 1989, 84(405): 165 175.
  • 7Li M and Yuan B. 2D-LDA: a novel statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 8Ye J P and Xiong T. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis[J]. Journal of Machine Learning Research, 2006, 7: 1183-1204.
  • 9Yu H and Yang J. A direct LDA algorithm for high- dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(11): 2067-2070.
  • 10Wan M H, Lai Z H, and Jin Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion[J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部