摘要
线性判别分析算法是一种经典的特征提取方法,但其仅在大样本情况下适用。本文针对传统线性判别分析算法面临的小样本问题和秩限制问题,提出了一种改进的线性判别分析算法ILDA。该方法在矩阵指数的基础上,重新定义了类内离散度矩阵和类间离散度矩阵,有效地同时提取类内离散度矩阵零空间和非零空间中的信息。若干人脸数据库上的比较实验表明了ILDA在人脸识别方面的有效性。
Linear discriminant analysis(LDA) is a typical feature extraction method,but there exist at least two critical drawbacks in LDA: the small sample size problem and the rank limitation problem.In order to solve the above problems,this paper presents an improved LDA method(ILDA) which redefines the between-class scatter matrix and the within-class scatter matrix.ILDA can effectively extract the discriminative information included in the null subspace and the non-null subspace of a within-class scatter matrix.Numerical experiments on some facial databases show ILDA achieves good performance of face recognition.
出处
《计算机工程与科学》
CSCD
北大核心
2011年第7期89-93,共5页
Computer Engineering & Science
关键词
线性判别分析
类内离散度矩阵
类间离散度矩阵
人脸识别
linear discriminant analysis(LDA)
within-class scatter matrix
between-class scatter matrix
face recognition