摘要
推广了Banach代数中的理想概念.定义了半理想证明了:设B为有单位元e的Banach代数,L为B的左(右)理想,则L的Riesz扩张Lr是B的半理想.且,其中{L}为B的极大左、右理想全体.Q为B的广义幂零元全体。
The definition of semi-ideal in the Banach algebra B is given. And the theroy is proved that: Ret B is a Banach algebra, which has unit elemet and if L is a left or righ ideal of B, then the Riesz extension L, of L is a semi-ideal of B, and, Where {L} is the totality of maximal left or right ideal of B. Q is the totality of the generalized nilpoenit elment of B. The Gelfond-Mazur representaion theory of the commutative Banch algebra is extended parthy.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第6期623-627,共5页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
极大理想
半理想
Riesz扩张
巴拿赫代数
理想
Banach algebra
maimal ideal
semi-ideal
Riesz extension
generalized nilpotent element