摘要
给出了非零特征域上导代数DAn 的GelfandKirillov 维数的定义,并证明它等于n .然后,得到了任意有限生成左DAn模的GK 维数只能为0 ,1 ,…,n 中的某一个,且存在左DAn模Mi,其GK 维数等于i,其中i 是0 ,1 ,…,n
The definition of Gelfand Kirillov dimension of the derivative algebra on a field of nonzero characteristic is defined. The dimension is proven to be n . This result concludes that the G?K dimension of any finitely generated left DA n module can only be one of {0,1,…, n }, and there does exist a left DA n module M i whose G?K demension is i , where i is one of 0,1,…, n .
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
1999年第12期85-87,共3页
Journal of Xi'an Jiaotong University