期刊文献+

一类奇异超线性椭圆方程解增长速度估计

Growth estimates of a singular super-linear elliptic equation
原文传递
导出
摘要 讨论边界奇异超线性方程:-Δu=a(x)up,x∈RN,其中连续函数a(x)=η(x)[d(x,Ω)]γ,η(x)≥0,γ>0。运用一个新的非线性Liouville定理讨论了当函数a(x)在光滑有界区域Ω上为0,而在RN\Ω珚上为正时,方程正解的估计问题,得到了相应于当a(x)≡1时方程正解估计的可比较性结果。 The boundary estimates of the singular superlinear elliptic equation -△U=a(x)u^p,X∈R^N, is considered, where continuous function a(x)=η(x)[d(x,δΩ)]^γ,η(x)≥0,γ〉0, When a(x) ≡0 in a smooth bounded subdomain Ω, and positive in R^N /Ω. By using a new nonlinear Liouville theorem, an estimate of the positive solution comparable is obtained for those in a(x) ≡1 case.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第7期124-126,共3页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10971046) 山东省高等学校优秀青年教师国内访问学者基金资助
关键词 奇异超线性椭圆方程 增长速度估计 非线性Liouville定理 singular super-linear elliptic equation boundary estimates nonlinear Liouville theorem
  • 相关文献

参考文献10

  • 1POLACIK P QUITTNER P, SOUPET P. Singularity and decay estimates via Liouville-type theorems. Part I: Elliptic equations and systems[J].Duke Math J, 2007, 139:555-579.
  • 2GIDAS B, SPRUCK J. A priori bounds for positive solutions of nonlinear elliptic equations [ J ]. Comm Pure Appl Math, 1981, 34:525-598.
  • 3DU Yihong, GUO Zongming. Liouville type results and eventual flatness of positive solutions for p-Laplacian equations [ J ]. Adv Diff Eqns, 2002, 7:1479-1512.
  • 4DANCER E N, DU Yihong. Some remarks on Liouville type results for quasilinear elliptic equations[J].Proc Amer Math Sco, 2003, 131:1891-1899.
  • 5CHEN Wenxiong,LI Congming. Moving planes, moving spheres and a priori estimates[ J]. J Diff Eqns, 2003, 195:1-13.
  • 6CHEN Wenxiong, LI Congming. A priori estimates for prescribing scalar curvature equations [ J ]. Ann Math, 1997, 145:547- 564.
  • 7AMANN H,LOPEZ-GOMEZ J. A priori bounds and multiple solutions for superlinear indefinite elliptic problems [ J ]. J Diff Eqns, 1998, 146:336-374.
  • 8DU Yihong. Multiplicity for positive solutions for an indefinite superlinear elliptic problem on R^N[J]. Annales de 1' Institut Henri Poincare (C) Non Linear Analysis, 2004, 21 (5) :657-672.
  • 9DU Yihong, LI S. Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations [ J ]. Adv Diff Eqns, 2005, 10(8) :841-860.
  • 10DONG Wei, MEI Linfeng. Multiple solutions for an indefinite superlinear elliptic problem on R^N[ J ]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73 (7) : 2056 -2070.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部